Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T23:32:52.365Z Has data issue: false hasContentIssue false

Determinants and effects of postileal fermentation in broilers and turkeys part 1: gut microbiota composition and its modulation by feed additives

Published online by Cambridge University Press:  10 March 2015

Z. ZDUŃCZYK
Affiliation:
Institute of Animal Reproduction and Food Research of the PAS, Olsztyn, Poland
J. JANKOWSKI
Affiliation:
Department of Poultry Science, University of Warmia and Mazury, Olsztyn, Poland
S. KACZMAREK*
Affiliation:
Department of Animal Nutrition and Feed Management, Poznan University of Life Science, Poland
J. JUŚKIEWICZ
Affiliation:
Institute of Animal Reproduction and Food Research of the PAS, Olsztyn, Poland
*
Corresponding author: sebak1@up.poznan.pl
Get access

Abstract

Postileal fermentation in the gastrointestinal tract of poultry takes place as a result of the interaction between two components of the intestinal ecosystem: rapidly changing microbiota and digesta with different physicochemical properties. Short chain fatty acids, the major products of fermentation, act to stabilise microbiota composition and maintain gut health, and constitute an additional source of energy. Due to different mechanisms of action of probiotics, phytobiotics and prebiotics in the intestinal ecosystem, the quantities and proportions of the major products of fermentation are affected by the type of feed additives. Some phytobiotics, including alkaloids, exert antimicrobial effects and reduce short chain fatty acids concentrations in the caecum. Mannan-oligosaccharides, regarded as prebiotics, may prevent the adhesion of pathogenic bacteria (mostly E. coli and Salmonella) to the gut wall. Prebiotic oligosaccharides, in particular fructo-oligosaccharides and inulin, are used by beneficial bacteria of the genera Bifidobacterium and Lactobacillus, thus enhancing the synthesis of short chain fatty acids in the lower gastro intestinal tract of poultry, while low intestinal pH inhibits the growth of pathogenic bacteria.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ANADON, A., MARTINEZ-LARRANGA, M.R. and MARTNEZ, M.A. (2006) Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regulatory Toxicology and Pharmacology 45: 91-95.Google Scholar
ANNISON, E.F., HILL, K.J. and KENWORTHY, R.C. (1968) Volatile fatty acids in the digestive tract of the fowl. British Journal of Nutrition 22: 207-216.Google Scholar
APAJALAHTI, J., KETTUNEN, A. and GRAHAMH, H. (2004) Characteristics of gastrointestinal microbial communities, with special reference to the chicken. World's Poultry Science Journal 60: 223-232.Google Scholar
APAJALAHTI, J., RINTTILÄ, T. and KETTUNEN, A. (2012) Does the composition of intestinal microbiota determine or reflect feed conversion efficiency? Proceedings of the 23rd Australian Poultry Science Symposium, Sydney, pp. 32-39.Google Scholar
APPLEGATE, T.J., KLOSE, V., STEINER, T., GANNER, A. and SCHATZMAYR, G. (2010) Probiotics and phytogenics for poultry: Myth or reality. Journal of Applied Poultry Research 19: 194-210.Google Scholar
BIGGS, P. and PARSONS, C.M. (2008) The Effects of Several Organic Acids on Growth Performance, Nutrient Digestibilities, and Cecal Microbial Populations in Young Chicks. Poultry Science 87: 2581-2589.Google Scholar
BRENES, A. and ROURA, E. (2010) Essential oils in poultry nutrition: Main effects and modes of action. Animal Feed Science and Technology 158: 1-14.Google Scholar
CHOCT, M., ANNISON, G. and TRIMBLE, R.P. (1992) Soluble wheat pentosans exhibit different antinutritive activities in intact and cecectomized broiler chickens. Journal of Nutrition 122: 2457-2465.Google Scholar
COLE, K., FARNELL, M.B., DONOGHUE, A.M., STERN, N.J., SVETOCH, E.A., ERUSLANOV, B.N., VOLODINA, L.I., KOVALEV, Y.N., PERELYGIN, V.V., MITSEVICH, E.V., MITSEVICH, I.P., LEVCHUK, V.P., POKHILENKO, V.D., BORZENKOV, V.N., SVETOCH, O.E., KUDRYAVTSEVA, T.Y., REYES-HERRERA, I., BLORE, P.J., DE LOS SANTOS, F.S. and DONOGHUE, D.J. (2006) Bacteriocins Reduce Campylobacter Colonization and Alter Gut Morphology in Turkey Poults. Poultry Science 85: 1570-1575.Google Scholar
COLLINGTON, G.K., PARKER, D.S. and AMSTRONG, D.G. (1990) The influence of inclusion of either on an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig. British Poultry Science 64: 59-70.Google Scholar
DORMAN, H.J.D. and DEANS, S.G. (2000) Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology 88: 308-316.Google Scholar
FERGUSON, M.J. and JONES, G.P. (2000) Production of short-chain fatty acids following in vitro fermentation of saccharides, saccharide esters, fructo-oligosaccharides, starches, modified starches and non-starch polysaccharides. Journal of the Science of Food and Agriculture 80: 166-170.Google Scholar
GEIER, M.S., TOROK, V.A., ALLISON, G.E., OPH EL-KELLER, K. and HUGHES, R.J. (2009) Indigestible carbohydrates alter the intestinal microbiota but not influence the performance of broiler chickens. Journal of Applied Microbiology 106: 2540-1548.Google Scholar
GUARDIA, S., KONSAK, B., COMBES, S., LEVENEZ, F., CAUQUIL, L., GUILLO, J.F. MOREAU-VAUZELLE, C., LESSIRE, M., JUIN, H. and GABRIEL, I. (2011) Effects of stocking density on the growth performance and digestive microbiota of broiler chickens. Poultry Science 90: 1878-1889.Google Scholar
GUILLOTEAU, P., MARTIN, L., EECKHAUT, V., DUCATELLE, R., ZABIELSKI, R. and VAN IMMERSEEL, F. (2010) From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews 23: 366-384.Google Scholar
HUYGHEBAERT, G., DUCATELLE, R. and IMMERSEEL, F.V. (2011) An up- date on alternatives to antimicrobial growth promoters for broilers. Veterinary Journal 187: 182-188.CrossRefGoogle Scholar
JAMROZ, D., JAKOBSEN, K., KNUDSEN, K.E.B., WILICZKIEWICZ, A. and ORDA, J. (2002) Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comparative Biochemistry and Physiology 131: 657-668.Google Scholar
JANKOWSKI, J., ZDUŃCZYK, Z., JUŚKIEWICZ, J., KOZŁOWSKI, K., LECEWICZ, A. and JEROCH, H. (2009) Gastrointestinal tract and metabolic response of broilers to diets with the Macleaya cordata alkaloid extract. European Poultry Science 73: 95-101.Google Scholar
JIN, L.Z., HO, Y.W., ABDULLAH, N. and JALALUDIN, S. (2000) Digestive and bacterial enzymes in broilers fed diets supplemented with Lactobacillus cultures. Poultry Science 79: 886-891.Google Scholar
JORGENSEN, H., ZHAO, X.Q., KNUDSEN, K.E.B. and EGGUM, B.O. (1996) The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. British Journal of Nutrition 15: 379-395.Google Scholar
JÓZEFIAK, D., KACZMAREK, S. and RUTKOWSKI, A. (2008) The effects of benzoic acid supplementation on the performance of broiler chickens. Journal of Animal Physiology and Animal Nutrition 94: 29-34.Google Scholar
JÓZEFIAK, D., KACZMAREK, S., BOCHENEK, M. and RUTKOWSKI, A. (2006) A note on effects of benzoic acid supplementation on the performance and microbiota populations of broiler chickens. Journal of Animal and Feed Sciences 16: 252-256.Google Scholar
JÓZEFIAK, D., RUTKOWSKI, A., KACZMAREK, S., JENSEN, B.B., ENGBERG, R.M. and HOJBERG, O. (2010a) Effect of β-glucanase and xylananse supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. British Poultry Science 51: 546-557.Google Scholar
JÓZEFIAK, D., SIP, A., KACZMAREK, S. and RUTKOWSKI, A. (2010b) The effects of Carnobacterium divergens AS7 bacteriocin on gastroin- testinal microflora in vitro and on nutrient retention in broiler chickens. Journal of Animal and Feed Sciences 19: 460-467.Google Scholar
JÓZEFIAK, D., SIP, A., RAWSKI, M., RUTKOWSKI, A., KACZMAREK, S., HOJBERG, O., JENSEN, B.B. and ENGBERG, R.M. (2011) Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens. British Poultry Science 52: 492-499.CrossRefGoogle ScholarPubMed
JÓZEFIAK, D., SIP, A., RUTKOWSKI, A., RAWSKI, M., KACZMAREK, S., WOŁUŃ-CHOLEWA, M., ENGBERG, R.M. and HOJBERG, O. (2012) Lyophilized Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens. Poultry Science 91: 1899-1907.Google Scholar
JUŚKIEWICZ, J., GRUZAUSKAS, R., ZDUŃCZYK, Z., SEMASKAITE, A., JANKOWSKI, J., TOTILAS, Z., JARULE, V., SASYTE, V., ZDUŃCZYK, P., RACEVICIUTE-STUPELIENE, A. and SVIRMICKAS, G. (2011) Effects of dietary addition of Macleaya cordata alkaloid extract on growth performance, caecal indices and breast meat fatty acids profile in male broilers. Journal of Animal Physiology and Animal Nutrition 95: 171-178.Google Scholar
JUŚKIEWICZ, J., JANKOWSKI, J., ZDUŃCZYK, Z., BIEDRZYCKA, E. and KONCICKI, A. (2005) Performance and microbial status of turkeys fed diets containing different levels of inulin. European Poultry Science 69: 175-180.Google Scholar
JUŚKIEWICZ, J., ZDUŃCZYK, Z. and JANKOWSKI, J. (2006) Growth performance and metabolic response of the gastrointestinal tract of turkeys to diets with different levels of mannan-oligosaccharide. World's Poultry Science Journal 62: 612-625.Google Scholar
JUŚKIEWICZ, J., ZDUŃCZYK, Z., GRUZAUSKAS, R., DAUKSIENE, A., RACEVICIUTE-STUPELIENE, A. and TOTILAS, Z. (2013) Comparative effects of dietary phytobiotic (Macleaya cordata alkaloid extract) and probiotic (Pediococcus acidilactici MA 18/5 M) preparations as single supplements or in combination on fermentative processes in the broiler chickens caeca. Veterinary Medicine and Zootechnics 62: 50-55.Google Scholar
JUŚKIEWICZ, J., ZDUŃCZYK, Z., JANKOWSKI, J., KRÓL, B. and MILALA, J. (2008) Gastrointestinal tract metabolism of young turkeys fed diets supplemented with pure nystose or a fructooligosaccharide mixture. Archives of Animal Nutrition 62: 389-403.Google Scholar
KIM, J., MARSHALL, M.R. and WEI, C.I. (1995) Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry 43: 2839-2845.Google Scholar
KLEWICKA, E., ZDUŃCZYK, Z. and JUSKIEWICZ, J. (2009) Effect of lactobacillus fermented beetroot juice on composition and activity of cecal microflora in rats. European Food Research and Technology 229: 153-157.Google Scholar
LIN, J. (2009) Novel approaches for Campylobacter control in poultry. Foodborne Pathogens and Disease 6: 755-765.Google Scholar
LUMPKINS, B.S., BATAL, A.B. and LEE, M.D. (2010) Evaluation of the bacterial community and intestinal development of different genetic lines of chickens. Poultry Science 89: 1614-1621.Google Scholar
MIKULSKI, D., ZDUŃCZYK, Z., JANKOWSKI, J. and JUŚKIEWICZ, J. (2008) Effects of organic acids or natural plant extracts added to diets for turkeys on growth performance, gastrointestinal tract metabolism and carcass characteristics. Journal of Animal and Feed Sciences 17: 233-246.Google Scholar
MOLIST, E., GOMEZ DE SEGURA, A., GASA, J., HERMES, R.G., MANZANILLA, E.G., ANGUITA, M. and PEREZ, J.F. (2009) Effects of the insoluble and soluble dietary fibre on the physicochemical properties of digesta and the microbial activity in early weaned piglets. Animal Feed Science and Technology 149: 346-353.Google Scholar
MROZ, Z., JONGBLOED, A.W., PARTANEN, K.H., VREMAN, K., KEMME, P.A. and KOGUT, J. (2000) The effects of calcium benzoate in diets with or without organic acids on dietary buffering capacity, apparent digestibility, retention of nutrients, and manure characteristics in swine. Journal of Animal Science 78: 2622-2632.CrossRefGoogle ScholarPubMed
NESHEIM, M.C. and GARLICH, J.D. (1963) Studies on ornithine synthesis in relation to benzoic acid excretion in the domestic fowl. Journal of Nutrition 79: 311-317.CrossRefGoogle Scholar
PATEL, S. and GOYAL, A. (2011) Functional oligosaccharides: production, properties and applications. World Journal of Microbiology and Biotechnology 27: 1119-1128.Google Scholar
PESCHEL, A. and SAHL, H.G. (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nature Reviews Microbiology 4: 529-536.Google Scholar
QUIGLEY, E.M.M. (2010) Prebiotics and probiotics; modifying and mining the microbiota. Pharmacology Research 61: 213-218.Google Scholar
REBOLÉ, A., ORTIZ, L.T., RODRÍGUEZ, M.L., ALZUETA, C., TREVIÑO, J. and VELASCO, S. (2010) Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat- and barley-based diet. Poultry Science 89: 276-286.Google Scholar
REHMAN, H.U., VANHJEN, W., AWAD, W.A. and ZENTEK, J. (2007) Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of Animal Nutrition 61: 319-335.CrossRefGoogle ScholarPubMed
RICKE, S.C., KUNDIGER, M.M., MILLER, D.R. and KEETON, J.T. (2005) Alternatives to antibiotics: chemical and physical antimicrobial interventions and foodborne pathogen response. Poultry Science 84: 667-675.Google Scholar
RILEY, M.A. and WERTZ, J.E. (2002) Bacteriocins: Evolution, ecology, and application. Annual Review of Microbiology 56: 117-137.Google Scholar
RUSSELL, J.B. (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. Journal of Applied Bacteriology 73: 363-370.Google Scholar
SACRANIE, A., IJI, P.A., MIKKELSEN, L.L. and CHOCT, M. (2007) Occurrence of reverse of peristalsis in broiler chickens. Australian Poultry Science Symposium, University of Sydney, Sydney, Australia, pp. 161-164.Google Scholar
SAHL, H.G. and BIERBAUM, G. (2008) Multiple activities in natural antimicrobials. Microbe 6: 467-473.Google Scholar
SCHNEITZ, C. (2005) Competitive exclusion in poultry - 30 years of research. Food Control 16: 657-667.Google Scholar
SHAKOURI, M.D., KERMANSHAHI, H. and MOHSENZADEH, M. (2006) Effects of different non starch polysaccharides in semi purified diets on performance and intestinal microflora of young broiler chickens. International Journal of Poultry Science 5: 557-561.Google Scholar
SVIHUS, B., CHOCT, M. and CLASSEN, H. L. (2013) Function and nutritional roles of the avian caeca: A review. World's Poultry Science Journal 69: 249-263.Google Scholar
THOMPSON, J.L. and HINTON, M. (1997) Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop. British Poultry Science 38: 59-65.Google Scholar
TOROK, V.A., OPHEL-KELLER, K., LOO, M. and HUGHES, R.J. (2008) Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Applied and Environmental Microbiology 74: 783-791.Google Scholar
VAN DER WIELEN, P.W.J.J., BIESTERVELD, S., NOTERMANS, S., HOFSTARA, H., URLINGS, B.A.P. and KNAPEN VAN, F. (2000) Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Applied and Environmental Microbiology 66: 2536-2540.Google Scholar
WILLEMS, O.W., MILLER, S.P. and WOOD, B.J. (2012) Aspect of selection for feed efficiency in meat producing poultry. World's Poultry Science Journal 69: 77-87.Google Scholar
WILLIAMS, R.T. (1959) Detoxication Mechanisms, 2nd edn. John Wiley and Sons Inc., NY.Google Scholar
WINDISCH, W.M., SCHEDLE, K., PLITZNER, C. and KROISMAYR, A. (2008) Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science 86(Suppl): E140-E148.Google Scholar
YANG, Y., IJI, P.A. and CHOCT, M. (2009) Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World's Poultry Science Journal 65: 97-114.Google Scholar
ZDUŃCZYK, Z., JANKOWSKI, J., JUŚKIEWICZ, J., LECEWICZ, A. and SŁOMIŃSKI, B. (2010) Application of soybean meal, soy protein concentrate and isolate differing in alpha-galactosides content to low- and high-fibre diets in growing turkeys. Journal of Animal Physiology and Animal Nutrition 94: 561-570.Google Scholar
ZDUŃCZYK, Z., GRUZAUSKAS, R., JUŚKIEWICZ, J., DAUKSIENE, A., RACEVICIUTE-STUPELIENE, A. and JARULE, V. (2013a) Effect of dietary probiotic Pediococcus acidilactici MA 18/5 and prebiotic mannanoligosaccharides and their combination on caecal parameters in hens. Veterinary Medicine and Zootechnics 63: 89-93.Google Scholar
ZDUŃCZYK, Z., JANKOWSKI, J., JUŚKIEWICZ, J., MIKULSKI, D. and SLOMINSKI, B.A. (2013b) Effect of different dietary levels of low-glucosinolate rapeseed (canola) meal and NSP-degrading enzymes on growth performance and gut physiology of growing turkeys. Canadian Journal of Animal Science 93: 353-362.Google Scholar
ZDUŃCZYK, Z., JUŚKIEWICZ, J., STAŃCZUK, J., JANKOWSKI, J. and KRÓL, B. (2007) Effect of a Kestose and Nystose Preparation on Growth Performance and Gastrointestinal Tract Function of Turkeys. Poultry Science 86: 1133-1139.CrossRefGoogle ScholarPubMed
ZENTEK, J., MARQUART, B. and PIETRZAK, T. (2002) Intestinal effect of mannanoligosaccharides, transgalactosaccharides, lactose and lactulose in dogs. Journal of Nutrition 132: 1682-1684.CrossRefGoogle ScholarPubMed