Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T14:11:22.157Z Has data issue: false hasContentIssue false

Nanoindentation as a tool to measure and map mechanical properties of hardened cement pastes

Published online by Cambridge University Press:  25 February 2015

Chuanlin Hu*
Affiliation:
Nano and Advanced Materials Institute, The Hong Kong University of Science and Technology, Hong Kong, China
*
Address all correspondence to Chuanlin Huchuanlin@connect.ust.hk
Get access

Abstract

Regarding the significance of cement paste in construction materials, the present paper aims to use nanoindentation to measure and map mechanical properties of hardened cement pastes. The mechanical properties of involved phases were extracted from grid nanoindentation on the cement paste. The results suggested that nanoindentation can be used as a tool to measure and map mechanical properties of hardened cement pastes, and can identify the phases, including outer product, inner product, calcium hydroxide (or interface of residual cement clinker), and residual cement clinker.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Constantinides, G. and Ulm, F.J.: The effect of two types of C–S–H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem. Concrete Res. 34, 67 (2004).CrossRefGoogle Scholar
2.Zhu, W., Hughes, J.J., Bicanic, N. and Pearce, C.J.: Nanoindentation mapping of mechanical properties of cement paste and natural rocks. Mater. Charact. 58, 1189 (2007).CrossRefGoogle Scholar
3.Jennings, H.M., Thomas, J.J., Gevrenov, J.S., Constantinides, G. and Ulm, F.J.: A multi-technique investigation of the nanoporosity of cement paste. Cem. Concrete Res. 37, 329 (2007).CrossRefGoogle Scholar
4.Constantinides, G. and Ulm, F.J.: The nanogranular nature of C–S–H. J. Mech. Phys. Solids 55, 64 (2007).Google Scholar
5.Mondal, P., Shah, S.P. and Marks, L.: A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cem. Concrete Res. 37, 1440 (2007).CrossRefGoogle Scholar
6.Ulm, F.J., Vandamme, M., Bobko, C. and Ortega, J.A.: Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J. Am. Ceram. Soc. 90, 2677 (2007).Google Scholar
7.Vandamme, M. and Ulm, F.J.: Nanogranular origin of concrete creep. Proc. Natl. Acad. Sci. U. S. A. 106, 10552 (2009).Google Scholar
8.Howind, T., Hughes, J.J., Zhu, W., Puertas, F., Goñi, S., Hernández, M.S., Guerrero, A., Palacios, M. and Dolado, J.S.: Mapping of mechanical properties of cement paste microstructures. In 13th Int. Congress on the Chemistry of Cement, Palomo, Á.; Zaragoza, A. and Agüí, J.C.L.; (Madrid, 2011).Google Scholar
9.Davydov, D., Jirasek, M. and Kopecky, L.: Critical aspects of nano-indentation technique in application to hardened cement paste. Cem. Concrete Res. 41, 20 (2011).Google Scholar
10.Vandamme, M., Ulm, F.J. and Fonollosa, P.: Nanogranular packing of C–S–H at substochiometric conditions. Cem. Concrete Res. 40, 14 (2010).Google Scholar
11.Hu, C.L., Li, Z.J., Gao, Y.Y. and Zhang, Y.M.: Investigation on microstructures of cementitious composites incorporating slag. Adv. Cem. Res. 26, 222 (2014).Google Scholar
12.Chen, J.J., Sorelli, L., Vandamme, M., Ulm, F.J. and Chanvillard, G.: A coupled nanoindentation/sem-eds study on low water/cement ratio portland cement paste: evidence for C–S–H/Ca(OH)(2) nanocomposites. J. Am. Ceram. Soc. 93, 1484 (2010).Google Scholar
13.Hu, C.L., Han, Y.G., Gao, Y.Y., Zhang, Y.M. and Li, Z.J.: Property investigation of calcium–silicate–hydrate (C–S–H) gel in cementitious composites. Mater. Charact. 95, 129 (2014).Google Scholar
14.Pharr, G.M. and Bolshakov, A.: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).CrossRefGoogle Scholar
15.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
16.Cheng, Y.T. and Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R - Rep. 44, 91 (2004).CrossRefGoogle Scholar
17.Tabor, D.: A simple theory of static and dynamic hardness. Proc. R. Soc. A 192, 247 (1948).Google Scholar
18.Cariou, S., Ulm, F.J. and Dormieux, L.: Hardness-packing density scaling relations for cohesive-frictional porous materials. J. Mech. Phys. Solids 56, 924 (2008).CrossRefGoogle Scholar
19.Dempster, A.P., Laird, N.M. and Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 39, 1 (1977).Google Scholar
20.Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461 (1978).Google Scholar
21.Jiang, L., Zhang, Y.M., Hu, C.L. and Li, Z.J.: Calculation of elastic modulus of early-age cement paste. Adv. Cem. Res. 24, 193 (2012).CrossRefGoogle Scholar
22.Velez, K., Maximilien, S., Damidot, D., Fantozzi, F. and Sorrentino, F.: Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cem. Concr. Res. 31, 555 (2001).Google Scholar