Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-15T13:22:10.910Z Has data issue: false hasContentIssue false

N-doped polymer-derived Si(N)OC: The role of the N-containing precursor

Published online by Cambridge University Press:  24 February 2015

Van Lam Nguyen*
Affiliation:
Department of Industrial Engineering, University of Trento, Trento 38123, Italy
Nadhira Bensaada Laidani
Affiliation:
Fondazione Bruno Kessler, Centro Materiali e Microsistemi, Plasma, Advanced Materials and Surface Engineering (PAM-SE), Trento 38123, Italy
Gian Domenico Sorarù
Affiliation:
Department of Industrial Engineering, University of Trento, Trento 38123, Italy
*
a)Address all correspondence to this author. e-mail: vanlam.nguyen@ing.unitn.it
Get access

Abstract

Polymer precursors for Si(N)OC ceramics have been synthesized by hydrosilylation reaction of polyhydridomethylsiloxane (PHMS) with three different nitrogen containing compounds. The results obtained by combining characterization techniques such as FTIR, 13C- and 29Si-NMR confirm the occurrence of the cross-linking reaction between Si–H and vinyl groups. The structural characterization of the corresponding ceramic phase shows that the type of N-containing compounds strongly influences the pyrolytic transformation as well as the crystallization behavior of the final ceramics. Elemental analysis clearly indicates that N is present in the Si(N)OC matrix and the degree of N retention after pyrolysis is related to the type of N-containing starting compound. XPS data show that N–C bonds are present in the Si(N)OC ceramic samples even if only N–Si bonds are present in the starting N-containing precursors. However, if nitrogen atoms form bonds with sp2 carbon atoms in the preceramic polymer then a larger fraction of C–N bonds is retained in the final Si(N)OC ceramic.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bréquel, H., Parmentier, J., Walter, S., Badheka, R., Trimmel, G., Masse, S., Latournerie, J., Dempsey, P., Turquat, C., Desmartin-Chomel, A., Le Neindre-Prum, L., Jayasooriya, U.A., Hourlier, D., Kleebe, H-J., Sorarù, G.D., Enzo, S., and Babonneau, F.: Systematic structural characterisation of the high temperature behaviour of nearly-stoichiometric silicon oxycarbide glasses. Chem. Mater. 16, 25852598 (2004).Google Scholar
Colombo, P., Mera, G., Riedel, R., and Soraru, G.D.: Polymer-derived ceramics: 40 Years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93(7), 132 (2010).Google Scholar
Saha, A., Raj, R., and Williamson, D.L.: A model for the nanodomains in polymer-derived SiCO. J. Am. Ceram. Soc. 89, 21882195 (2006).Google Scholar
Widgeon, S.J., Sen, S., Mera, G., Ionescu, E., Riedel, R., and Navrotsky, A.: 29Si and 13C solid-state NMR spectroscopic study of nanometer-scale structure and mass fractal characteristics of amorphous polymer derived silicon oxycarbide ceramics. Chem. Mater. 22, 62216228 (2010).Google Scholar
Suyal, N., Krajewski, T., and Mennig, M.: Sol-gel synthesis and microstructural characterization of silicon oxycarbide glass sheets with high fracture strength and high modulus. J. Sol-Gel Sci. Technol. 13, 995999 (1998).Google Scholar
Nguyen, V.L., Proust, V., Quievryn, C., Bernard, S., Miele, P., and Soraru, G.D.: Processing, mechanical characterization, and alkali resistance of siliconboronoxycarbide (SiBOC) glass fibers. J. Am. Ceram. Soc. 97, 31433149 (2014).CrossRefGoogle Scholar
Soraru, G.D., Modena, S., Guadagnino, E., Colombo, P., Egan, J., and Pantano, C.G.: Chemical durability of silicon oxycarbide glasses. J. Am. Ceram. Soc. 85, 15291536 (2002).Google Scholar
Narisawa, M., Kawai, T., Watase, S., Matsukawa, K., Dohmaru, T., Okamura, K., and Iwase, A.: Long-lived photoluminescence in amorphous Si-O-C(-H) ceramics derived from polysiloxanes. J. Am. Ceram. Soc. 95, 39353940 (2012).CrossRefGoogle Scholar
Sanchez-Jimenez, P.E. and Raj, R.: Lithium insertion in polymer-derived silicon oxycarbide ceramics. J. Am. Ceram. Soc. 93, 11271135 (2010).CrossRefGoogle Scholar
Nguyen, V.L., Zanella, C., Bettotti, P., and Soraru, G.D.: Electrical conductivity of SiOCN ceramics by the powder-solution-composite technique. J. Am. Ceram. Soc. 97, 25252530 (2014).Google Scholar
Karakuscu, A., Guider, R., Pavesi, L., and Soraru, G.D.: White luminescence from sol–gel-derived SiOC thin films. J. Am. Ceram. Soc. 92, 29692974 (2009).CrossRefGoogle Scholar
Fukui, H., Ohsuka, H., Hino, T., and Kanamura, K.: Silicon oxycarbides in hard-carbon microstructures and their electrochemical lithium storage. J. Electrochem. Soc. 160, 12761281 (2013).Google Scholar
Pradeep, V.S., Graczyk-Zajac, M., Wilamowska, M., Riedel, R., and Soraru, G.D.: Influence of pyrolysis atmosphere on the lithium storage properties of carbon-rich polymer derived SiOC ceramic anodes. Solid State Ionics 262, 2224 (2014).Google Scholar
Riedel, R., Toma, L., Janssen, E., Nuffer, J., Melz, T., and Hanselka, H.: Piezoresistive effect in SiOC ceramics for integrated pressure sensors. J. Am. Ceram. Soc. 93, 920924 (2010).Google Scholar
Turquat, C., Kleebe, H-J., Gregori, G., Walter, S., and Soraru, G.D.: Transmission electron microscopy and electron energy-loss spectroscopy study of nonstoichiometric silicon-carbon-oxygen glasses. J. Am. Ceram. Soc. 96, 21892196 (2001).Google Scholar
Cordelair, J. and Greil, P.: Electrical conductivity measurements as a microprobe for structure transitions in polysiloxane derived Si-O-C ceramics. J. Eur. Ceram. Soc. 20, 19471957 (2000).CrossRefGoogle Scholar
Wang, K., Ma, B., Wang, Y., and An, L.: Complex impedance spectra of polymer-derived silicon oxycarbides. J. Am. Ceram. Soc. 96, 13631365 (2013).Google Scholar
Menapace, I., Mera, G., Riedel, R., Erdem, E., Eichel, R.A., Pauletti, A., and Appleby, G.A.: Luminescence of heat-treated silicon-based polymers: Promising materials for LED applications. J. Mater. Sci. 43, 57905796 (2008).CrossRefGoogle Scholar
Pradeep, V.S., Graczyk-Zajac, M., Riedel, R., and Soraru, G.D.: New insights in to the lithium storage mechanism in polymer derived SiOC anode materials. Electrochim. Acta 119, 7885 (2014).Google Scholar
Kroll, P.: Modeling the “free carbon” phase in amorphous silicon oxycarbide. J. Non-Cryst. Solids 351, 11211126 (2005).CrossRefGoogle Scholar
Sorarù, G.D., Babonneau, F., Maurina, S., and Vicens, J.: Sol-gel synthesis of SiBOC glasses. J. Non-Cryst. Solids 224, 173183 (1998).CrossRefGoogle Scholar
Schiavon, M.A., Ciuffi, K.J., and Yoshida, I.V.P.: Glasses in the Si-O-C-N system produced by pyrolysis of polycyclic silazane/siloxane networks. J. Non-Cryst. Solids 353, 22802288 (2007).Google Scholar
Gervais, C., Babonneau, F., Dallabona, N., and Soraru, G.D.: Sol-gel-derived silicon-boron oxycarbide glasses containing mixed silicon oxycarbide (SiCxO4-x) and boron oxycarbide (BCyO3-y) units. J. Am. Ceram. Soc. 84, 21602164 (2001).Google Scholar
Pena-Alonso, R., Mariotto, G., Gervais, C., Babonneau, F., and Soraru, G.D.: New insights on the high temperature nanostructure evolution of SiOC and B-doped SiBOC polymer-derived glasses. Chem. Mater. 19, 56945702 (2007).Google Scholar
Karakuscu, A., Guider, R., Pavesi, L., and Sorarù, G.D.: Broad-band tunable visible emission of sol–gel derived SiBOC ceramic thin films. Thin Solid Films 519, 38223826 (2011).Google Scholar
Klonczynski, A., Schneider, G., Riedel, R., and Theissmann, R.: Influence of boron on the microstructure of polymer derived SiCO ceramics. Adv. Eng. Mater. 6, 6468 (2004).CrossRefGoogle Scholar
Tavakoli, A.H., Campostrini, R., Gervais, C., Babonneau, F., Bill, J., Sorarù, G.D., and Navrotsky, A.: Energetics and structure of polymer derived Si-(B-)O-C glasses: Effect of the boron content and pyrolysis temperature. J. Am. Ceram. Soc. 97, 303309 (2014).Google Scholar
Kleebe, H-J., Gregori, G., Babonneau, F., Blum, Y.D., MacQueen, D.B., and Masse, S.: Evolution of C-rich SiCO ceramics. Part I. Characterization by integral spectroscopic techniques solid-state NMR and Raman spectroscopy. Int. J. Mater. Res. 97, 699709 (2006).Google Scholar
Sorarù, G.D., Dalcanale, F., Campostrini, R., Gaston, A., Blum, Y., Carturan, S., and Aravind, P.R.: Novel polysiloxane and polycarbosilane aerogels via hydrosilylation of preceramic polymers. J. Mater. Chem. 22, 76767680 (2012).Google Scholar
Socrates, G.: Infrared and Raman Characteristic Group Frequencies, 3rd ed. (John Wiley & Sons Ltd, West Sussex, England, 2001).Google Scholar
El Nahhal, I.M., Chehimi, M.M., Cordier, C., and Dodin, G.: XPS, NMR and FTIR structural characterization of polysiloxane-immobilized amine ligand systems. J. Non-Cryst. Solids 275, 142146 (2000).Google Scholar
Seitz, J., Bill, J., Eggerb, N., and Aldinger, F.: Structural investigations of Si/C/N-ceramics from polysilazane precursors by nuclear magnetic resonance. J. Eur. Ceram. Soc. 16, 885891 (1996).Google Scholar
Dibandjo, P., Diré, S., Babonneau, F., and Soraru, G.D.: Influence of the polymer architecture on the high temperature behavior of SiCO glasses: A comparison between linear- and cyclic-derived precursors. J. Non-Cryst. Solids 356, 132140 (2010).Google Scholar
Choong Kwet Yive, N., Corriu, R.J., Leclercq, D., Mutin, P., and Vioux, A.: Silicon carbonitride from polymeric precursors: Thermal cross-linking and pyrolysis of oligosilazane model compounds. J. Chem. Mater. 4, 141146 (1992).Google Scholar
Pohl, R., Dračínský, M., Slavětínská, L., and Buděšínský, M.: The observed and calculated 1H and 13C chemical shifts of tertiary amines and their N-oxides. Magn. Reson. Chem. 49, 320327 (2011).Google Scholar
Pham, T.A., Kim, D-P., Lim, T-W., Park, S-H., Yang, D-Y., and Lee, K-S.: Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. Adv. Funct. Mater. 16, 12351241 (2006).Google Scholar
Tang, C., Bando, Y., Golberg, D., and Xu, F.: Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide. Carbon 42, 26252633 (2004).CrossRefGoogle Scholar
Yamamoto, K., Koga, Y., and Fujiwara, S.: XPS studies of amorphous SiCN thin films prepared by nitrogen ion-assisted pulsed-laser deposition of SiC target. Diamond Relat. Mater. 10, 19211926 (2001).CrossRefGoogle Scholar
Zhang, C., Fu, L., Liu, N., Liu, M., Wang, Y., and Liu, Z.: Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 23, 10201024 (2011).Google Scholar
Soraru, G.D., Andrea, G.D., and Glisenti, A.: XPS characterization of gel-derived silicon oxycarbide glasses. Mater. Lett. 27, 15 (1996).Google Scholar
Mera, G., Navrotsky, A., Sen, S., Kleebe, H-J., and Riedel, R.: Polymer-derived SiCN and SiOC ceramics-structure and energetics at the nanoscale. J. Mater. Chem. A 1, 38263836 (2013).Google Scholar