Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T05:01:03.803Z Has data issue: false hasContentIssue false

Radiation effects on the magnetism and the spin dependent transport in magnetic materials and nanostructures for spintronic applications

Published online by Cambridge University Press:  11 February 2015

Jiwei Lu*
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
S. Joseph Poon
Affiliation:
Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
Stuart A. Wolf
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA; and Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
Bradley D. Weaver
Affiliation:
Naval Research Laboratory, Washington, District of Columbia 20375, USA
Patrick J. McMarr
Affiliation:
Naval Research Laboratory, Washington, District of Columbia 20375, USA
Harold Hughes
Affiliation:
Naval Research Laboratory, Washington, District of Columbia 20375, USA
Eugene Chen
Affiliation:
Samsung Semiconductor Inc., San Jose, California 95134, USA
*
a)Address all correspondence to this author. e-mail: jl5tk@virginia.edu
Get access

Abstract

Spintronics utilizes spin or magnetism to provide new ways to store and process information and is primarily associated with the utilization of spin polarized currents in memory and logic devices. With the end of silicon transistor technology in sight, spintronics can provide new paradigms for information processing and storage. Compared to charge based electronics, the advantages of magnetism/spin based devices are nonvolatility and ultra low power. In particular, magnetoresistive random access memories (MRAMs) are known to be “Rad Hard” [HXNV0100 64K x 16 Non-Volatile Magnetic RAM (www.honeywell.com/aerospace), S. Gerardin and A. Paccagnella, IEEE Trans. Nucl. Sci.57(6), 3016–3039 (2010), R.R. Katti, J. Lintz, L. Sundstrom, T. Marques, S. Scoppettuolo, and D. Martin, Proceedings of IEEE Radiation Effects Data Workshop, 103–105 (2009)] and are considered to be critical components for space and military systems due to their very low power consumption and nonvolatility. However, advances in the magnetic nanostructures and new materials for the scalability of MRAM and other potential applications require a re-evaluation of their radiation hardness. This review focuses mainly on recent progress in understanding the effects of irradiation on the magnetic materials and magnetic structures that are related to MRAM technology. Up to date, the most pronounced effects on the microstructures and the properties are linked to the displacement damage associated with heavy ion irradiation; however, the thermal effect is also important as it acts as an annealing process to recover the damage partially. Critical metrics for the magnetic tunnel junctions for postmortem characterizations will also be discussed. Finally, with the introduction of new perpendicular magnetic layers and the very thin MgO barrier layer in the next generation MRAM, the effects of the ionization damage shall be studied in the future.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Joel Ribis

References

REFERENCES

HXNV0100 64K x 16 Non-Volatile Magnetic RAM (www.honeywell.com/aerospace).Google Scholar
Gerardin, S. and Paccagnella, A.: Present and future non-volatile memories for space. IEEE Trans. Nucl. Sci. 57(6), 30163039 (2010).Google Scholar
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294(5546), 14881495 (2001).CrossRefGoogle ScholarPubMed
Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 24722475 (1988).Google Scholar
Schuller, I., Falco, C.M., Hilliard, J., Ketterson, J., Thaler, B., Lacoe, R., and Dee, R.: Transport properties of the compositionally modulation alloy Cu/Ni. AIP Conf. Proc. 53(1), 417421 (1979).CrossRefGoogle Scholar
Fullerton, E.E. and Schuller, I.K.: The 2007 Nobel Prize in physics: Magnetism and transport at the nanoscale. ACS Nano 1(5), 384389 (2007).Google Scholar
Prinz, G.A.: Magnetoelectronics. Science 282(5394), 16601663 (1998).Google Scholar
Tedrow, P.M. and Meservey, R.: Spin-dependent tunneling into ferromagnetic nickel. Phys. Rev. Lett. 26(4), 192195 (1971).CrossRefGoogle Scholar
Tedrow, P.M. and Meservey, R.: Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys. Rev. B 7(1), 318326 (1973).CrossRefGoogle Scholar
Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54(3), 225226 (1975).Google Scholar
Moodera, J.S., Kinder, L.R., Wong, T.M., and Meservey, R.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16), 32733276 (1995).CrossRefGoogle ScholarPubMed
Miyazaki, T. and Tezuka, N.: Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139(3), L231L234 (1995).CrossRefGoogle Scholar
Wang, D., Nordman, C., Daughton, J.M., Qian, Z., and Fink, J.: 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Trans. Magn. 40(4), 22692271 (2004).Google Scholar
Butler, W.H., Zhang, X.G., Schulthess, T.C., and MacLaren, J.M.: Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63(5), 054416 (2001).Google Scholar
Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., and Yang, S-H.: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3(12), 862867 (2004).Google Scholar
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., and Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(12), 868871 (2004).CrossRefGoogle ScholarPubMed
Lee, Y.M., Hayakawa, J., Ikeda, S., Matsukura, F., and Ohno, H.: Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl. Phys. Lett. 90(21), 212507 (2007).Google Scholar
Nogués, J. and Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192(2), 203232 (1999).CrossRefGoogle Scholar
Wolf, S.A., Jiwei, L., Stan, M.R., Chen, E., and Treger, D.M.: The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98(12), 21552168 (2010).CrossRefGoogle Scholar
Engel, B.N., Akerman, J., Butcher, B., Dave, R.W., DeHerrera, M., Durlam, M., Grynkewich, G., Janesky, J., Pietambaram, S.V., Rizzo, N.D., Slaughter, J.M., Smith, K., Sun, J.J., and Tehrani, S.: A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41(1), 132136 (2005).Google Scholar
Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(1–2), L1L7 (1996).Google Scholar
Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54(13), 93539358 (1996).CrossRefGoogle ScholarPubMed
Chappert, C., Fert, A., and Van Dau, F.N.: The emergence of spin electronics in data storage. Nat. Mater. 6(11), 813823 (2007).Google Scholar
Sun, J.Z., Monsma, D.J., Abraham, D.W., Rooks, M.J., and Koch, R.H.: Batch-fabricated spin-injection magnetic switches. Appl. Phys. Lett. 81(12), 22022204 (2002).CrossRefGoogle Scholar
Pufall, M.R., Rippard, W.H., and Silva, T.J.: Materials dependence of the spin-momentum transfer efficiency and critical current in ferromagnetic metal/Cu multilayers. Appl. Phys. Lett. 83(2), 323325 (2003).Google Scholar
Chen, E., Apalkov, D., Diao, Z., Driskill-Smith, A., Druist, D., Lottis, D., Nikitin, V., Tang, X., Watts, S., Wang, S., Wolf, S.A., Ghosh, A.W., Lu, J.W., Poon, S.J., Stan, M., Butler, W.H., Gupta, S., Mewes, C.K.A., Mewes, T., and Visscher, P.B.: Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 46(6), 18731878 (2010).Google Scholar
Kishi, T., Yoda, H., Kai, T., Nagase, T., Kitagawa, E., Yoshikawa, M., Nishiyama, K., Daibou, T., Nagamine, M., Amano, M., Takahashi, S., Nakayama, M., Shimomura, N., Aikawa, H., Ikegawa, S., Yuasa, S., Yakushiji, K., Kubota, H., Fukushima, A., Oogane, M., Miyazaki, T., and Ando, K.: Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM. In IEEE International Electron Devices Meeting, San Francisco, CA, 2008.Google Scholar
Zhu, X. and Zhu, J-G.: Spin torque and field-driven perpendicular MRAM designs scalable to multi-Gb/chip capacity. IEEE Trans. Magn. 42(10), 27392741 (2006).CrossRefGoogle Scholar
Weaver, B.D. and Summers, G.P.: Displacement Damage Effects in High Temperature Superconductors (Nova Science Publishers, New York, NY, 2003).Google Scholar
Jun, I., Xapsos, M.A., Messenger, S.R., Burke, E.A., Walters, R.J., Summers, G.R., and Jordan, T.: Proton nonionizing energy loss (NIEL) for device applications. IEEE Trans. Nucl. Sci. 50(6), 19241928 (2003).Google Scholar
Shockley, W., Hollomon, J.H., Maurer, R., and Seitz, F.: Imperfections in Nearly Perfect Crystals (John Wiley and Sons, London, UK, 1952).Google Scholar
Katti, R.R., Lintz, J., Sundstrom, L., Marques, T., Scoppettuolo, S., and Martin, D.: Heavy-ion and total ionizing dose (TID) performance of a 1 Mbit magnetoresistive random access memory (MRAM). In Proceedings of IEEE Radiation Effects Data Workshop, Quebec City, QC, 2009; pp. 103105.Google Scholar
Banerjee, T., Som, T., Kanjilal, D., and Moodera, J.S.: Effect of ion irradiation on the characteristics of magnetic tunnel junctions. Eur. Phys. J.: Appl. Phys. 32(2), 115118 (2005).Google Scholar
Conraux, Y., Nozieres, J.P., Da Costa, V., Toulemonde, M., and Ounadjela, K.: Effects of swift heavy ion bombardment on magnetic tunnel junction functional properties. J. Appl. Phys. 93(10), 73017303 (2003).Google Scholar
Schmalhorst, J. and Reiss, G.: Transport properties of magnetic tunnel junctions with ion irradiated AlO x barriers. J. Magn. Magn. Mater. 272, E1485E1486 (2004).Google Scholar
Sacher, M.D., Sauerwald, J., Schmalhorst, J., and Reiss, G.: Influence of noble-gas ion irradiation on alumina barrier of magnetic tunnel junctions. J. Appl. Phys. 98(10), 103532 (2005).Google Scholar
Qi, X.J., Wang, Y.G., Yan, J., Miao, X.F., and Li, Z.Q.: Influence of Ga+ ion irradiation on thermal relaxation of exchange bias field in the IrMn-based magnetic tunnel junctions. Solid State Commun. 150(35–36), 16931697 (2010).Google Scholar
Schmalhorst, J. and Reiss, G.: Temperature and bias-voltage dependent transport in magnetic tunnel junctions with low energy Ar-ion irradiated barriers. Phys. Rev. B 68(22), 224437 (2003).Google Scholar
Snoeck, E., Baules, P., BenAssayag, G., Tiusan, C., Greullet, F., Hehn, M., and Schuhl, A.: Modulation of interlayer exchange coupling by ion irradiation in magnetic tunnel junctions. J. Phys.: Condens. Matter 20(5), 055219 (2008).Google Scholar
Gibaud, A. and Hazra, S.: X-ray reflectivity and diffuse scattering. Curr. Sci. India 78(12), 14671477 (2000).Google Scholar
Bowen, D.K. and Tanner, B.K.: X-Ray Metrology in Semiconductor Manufacturing (CRC Press, Boca Raton, FL, 2006).Google Scholar
Brower, D.T., Revay, R.E., and Huang, T.C.: A study of X-ray reflectivity data analysis methods for thin film thickness determination. Powder Diffr. 11, 114 (1996).Google Scholar
Hughes, H., Bussmann, K., McMarr, P.J., Shu-Fan, C., Shull, R., Chen, A.P., Schafer, S., Mewes, T., Ong, A., Chen, E., Mendenhall, M.H., and Reed, R.A.: Radiation studies of spin-transfer torque materials and devices. IEEE Trans. Nucl. Sci. 59(6), 30273033 (2012).CrossRefGoogle Scholar
Ren, F.H., Jander, A., Dhagat, P., and Nordman, C.: Radiation tolerance of magnetic tunnel junctions with MgO tunnel barriers. IEEE Trans. Nucl. Sci. 59(6), 30343038 (2012).Google Scholar
Kobayashi, D., Kakehashi, Y., Hirose, K., Onoda, S., Makino, T., Ohshima, T., Ikeda, S., Yamanouchi, M., Sato, H., Enobio, E.C., Endoh, T., and Ohno, H.: Influence of heavy ion irradiation on perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions. IEEE Trans. Nucl. Sci. 61(4), 17101716 (2014).CrossRefGoogle Scholar
Chappert, C., Bernas, H., Ferré, J., Kottler, V., Jamet, J-P., Chen, Y., Cambril, E., Devolder, T., Rousseaux, F., Mathet, V., and Launois, H.: Planar patterned magnetic media obtained by ion irradiation. Science 280(5371), 19191922 (1998).Google Scholar
Ravelosona, D., Chappert, C., Mathet, V., and Bernas, H.: Chemical order induced by ion irradiation in FePt (001) films. Appl. Phys. Lett. 76(2), 236238 (2000).Google Scholar
Mougin, A., Mewes, T., Jung, M., Engel, D., Ehresmann, A., Schmoranzer, H., Fassbender, J., and Hillebrands, B.: Local manipulation and reversal of the exchange bias field by ion irradiation in FeNi/FeMn double layers. Phys. Rev. B 63(6), 060409 (2001).Google Scholar
Lai, C-H., Yang, C-H., and Chiang, C.C.: Ion-irradiation-induced direct ordering of L10 FePt phase. Appl. Phys. Lett. 83(22), 45504552 (2003).Google Scholar
Esquinazi, P., Spemann, D., Hohne, R., Setzer, A., Han, K.H., and Butz, T.: Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 91(22), 227201 (2003).CrossRefGoogle ScholarPubMed
Brown, R.D., Cost, J.R., and Stanley, J.T.: Irradiation-induced decay of magnetic-permeability of metglas 2605s-3 and mumetal. J. Nucl. Mater. 131(1), 3743 (1985).Google Scholar
Fisher, D.G.: Irradiation and thermal annealing effects in amorphous magnetic alloys. Ph.D. Thesis, University of Delaware, 1983.Google Scholar
Park, D.G., Kim, C.G., Kim, H.C., Hong, J.H., and Kim, I.S.: Effect of neutron irradiation on magnetic properties in the low alloy Ni-Mo steel SA508-3. J. Appl. Phys. 81(8), 41254127 (1997).Google Scholar
Kim, H.C., Yu, S.C., Kim, C.G., Han, H.S., Cho, W.K., and Kim, D.H.: Effect of neutron irradiation on soft magnetic properties in amorphous FeCuNbSiB alloy. J. Appl. Phys. 87(9), 71157117 (2000).Google Scholar
Zhang, J.M., Lian, J., Fuentes, A.F., Zhang, F.X., Lang, M., Lu, F.Y., and Ewing, R.C.: Enhanced radiation resistance of nanocrystalline pyrochlore Gd2(Ti0.65Zr0.35)2O7 . Appl. Phys. Lett. 94(24), 243110 (2009).Google Scholar
Zhang, J.M., Lian, J., Zhang, F.X., Wang, J.W., Fuentes, A.F., and Ewing, R.C.: Intrinsic structural disorder and radiation response of nanocrystalline Gd2(Ti0.65Zr0.35)2O7 pyrochlore. J. Phys. Chem. C 114(27), 1181011815 (2010).Google Scholar
Skorvanek, I., Gerling, R., Graf, T., Fricke, M., and Hesse, J.: Neutron-irradiation effects on the structural, magnetic and mechanical-properties of amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9. IEEE Trans. Magn. 30(2), 548551 (1994).Google Scholar
Rose, M., Balogh, A.G., and Hahn, H.: Nucl. Instrum. Methods Phys. Res., Sect. B 127, 119122 (1997).Google Scholar
Narayan, J.: Critical size for defects in nanostructured materials. J. Appl. Phys. 100(3), 034309 (2006).Google Scholar
Kuwahara, K., Yamamoto, S., and Kobayash, M.: Effect of deuteron irradiation on magnetic-anisotropy of thin Ni-Fe films. Jpn. J. Appl. Phys. 12(10), 15671571 (1973).Google Scholar
Fassbender, J. and McCord, J.: Control of saturation magnetization, anisotropy, and damping due to Ni implantation in thin Ni81Fe19 layers. Appl. Phys. Lett. 88(25), 252501 (2006).CrossRefGoogle Scholar
Gupta, A., Paul, A., Gupta, R., Avasthi, D.K., and Principi, G.: The effect of swift heavy ion irradiation on perpendicular magnetic anisotropy in Fe-Tb multilayers. J. Phys.: Condens. Matter 10(43), 96699680 (1998).Google Scholar
Blon, T., Chassaing, D., Ben Assayag, G., Hrabovsky, D., Bobo, J.F., Ousset, J.C., and Snoeck, E.: Effects of ion irradiation on cobalt thin films magnetic anisotropy. J. Magn. Magn. Mater. 272, E803E805 (2004).Google Scholar
Sickafus, K.E., Grimes, R.W., Valdez, J.A., Cleave, A., Tang, M., Ishimaru, M., Corish, S.M., Stanek, C.R., and Uberuaga, B.P.: Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6(3), 217223 (2007).Google Scholar
Ono, F., Kanamitsu, A., Matsushima, Y., Chimi, Y., Ishikawa, N., Kambara, T., and Iwase, A.: Effect of high-energy ion irradiation on magnetic properties in Fe-Pt invar alloys. Nucl. Instrum. Methods Phys. Res., Sect. B 245(1), 166170 (2006).CrossRefGoogle Scholar
Ono, F., Chimi, Y., Ishikawa, N., Kanamitsu, H., Matsushima, Y., Iwase, A., and Kambara, T.: Modification of Fe-Pd invar alloys by high-energy heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 257, 402405 (2007).Google Scholar
Anuniwat, N., Cui, Y.S., Wolf, S.A., Lu, J.W., and Weaver, B.D.: Recovery of the chemical ordering in L10 MnAl epitaxial thin films irradiated by 2 MeV protons. Appl. Phys. Lett. 102(10), 102406 (2013).Google Scholar
Yanar, C., Wiezorek, J.M.K., Radmilovic, V., and Soffa, W.A.: Massive transformation and the formation of the ferromagnetic L10 phase in manganese-aluminum-based alloys. Metall. Mater. Trans. A 33(8), 24132423 (2002).Google Scholar
Koch, A.J.J., Hokkeling, P., Steeg, M.G.v.d., and de Vos, K.J.: Modifications of structure and magnetic properties of L10 MnAl and MnGa films by Kr+ ion irradiation. J. Appl. Phys. 31(5), S75S77 (1960).Google Scholar
Sands, T., Harbison, J.P., Leadbeater, M.L., Allen, J.S.J., Hull, G.W., Ramesh, R., and Keramidas, V.G.: Epitaxial ferromagnetic τ‐MnAl films on GaAs. Appl. Phys. Lett. 57(24), 26092611 (1990).CrossRefGoogle Scholar
Bali, R., Wintz, S., Meutzner, F., Hubner, R., Boucher, R., Unal, A.A., Valencia, S., Neudert, A., Potzger, K., Bauch, J., Kronast, F., Facsko, S., Lindner, J., and Fassbender, J.: Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism. Nano Lett. 14(2), 435441 (2014).Google Scholar
Zamora, L.E., Perez Alcazar, G.A., Velez, G.Y., Betancur, J.D., Marco, J.F., Romero, J.J., Martinez, A., Palomares, F.J., and Gonzalez, J.M.: Disorder effect on the magnetic behavior of mechanically alloyed Fe1−x Al x (0.2 <= x <= 0.4). Phys. Rev. B 79(9) (2009).Google Scholar
Sort, J., Concustell, A., Menendez, E., Surinach, S., Rao, K.V., Deevi, S.C., Baro, M.D., and Nogues, J.: Periodic arrays of micrometer and sub-micrometer magnetic structures prepared by nanoindentation of a nonmagnetic intermetallic compound. Adv. Mater. 18(13), 1717 (2006).Google Scholar
Trautvetter, M., Wiedwald, U., Paul, H., Minkow, A., and Ziemann, P.: Thermally driven solid-phase epitaxy of laser-ablated amorphous AlFe films on (0001)-oriented sapphire single crystals. Appl. Phys. A 102(3), 725730 (2011).Google Scholar