Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T07:59:31.778Z Has data issue: false hasContentIssue false

A catalytic alloy approach for graphene on epitaxial SiC on silicon wafers

Published online by Cambridge University Press:  05 February 2015

Francesca Iacopi*
Affiliation:
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
Neeraj Mishra
Affiliation:
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
Benjamin Vaughan Cunning
Affiliation:
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
Dayle Goding
Affiliation:
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
Sima Dimitrijev
Affiliation:
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
Ryan Brock
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
Reinhold H. Dauskardt
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
Barry Wood
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072, Australia
John Boeckl
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson AFB, Ohio 45433, USA
*
a)Address all correspondence to this author. e-mail: f.iacopi@griffith.edu.au
Get access

Abstract

We introduce a novel approach to the synthesis of high-quality and highly uniform few-layer graphene on silicon wafers, based on solid source growth from epitaxial 3C-SiC films. Using a Ni/Cu catalytic alloy, we obtain a transfer-free bilayer graphene directly on Si(100) wafers, at temperatures potentially compatible with conventional semiconductor processing. The graphene covers uniformly a 2″ silicon wafer, with a Raman ID/IG band ratio as low as 0.5, indicative of a low defectivity material. The sheet resistance of the graphene is as low as 25 Ω/square, and its adhesion energy to the underlying substrate is substantially higher than transferred graphene. This work opens the avenue for the true wafer-level fabrication of microdevices comprising graphene functional layers. Specifically, we suggest that exceptional conduction qualifies this graphene as a metal replacement for MEMS and advanced on-chip interconnects with ultimate scalability.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666669 (2004).Google Scholar
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., and De Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 1991219916 (2004).Google Scholar
De Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., and Conrad, E.: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. U. S. A. 108, 1690016905 (2011).CrossRefGoogle ScholarPubMed
Forti, S. and Starke, U.: Epitaxial graphene on SiC: From carrier density engineering to quasi-free standing graphene by atomic intercalation. J. Phys. D: Appl. Phys. 47, 094013 (2014).CrossRefGoogle Scholar
Ouerghi, A., Kahouli, A., Lucot, D., Portail, M., Travers, L., Gierak, J., Penuelas, J., Jegou, P., Shukla, A., Chassagne, T., and Zielinski, M.: Epitaxial graphene on cubic SiC(111)/Si(111) substrate. Appl. Phys. Lett. 96, 191910 (2010).CrossRefGoogle Scholar
Gupta, B., Notarianni, M., Mishra, N., Shafiei, M., Iacopi, F., and Motta, N.: Evolution of epitaxial graphene layers on 3C SiC/Si(111) as a function of annealing temperature in UHV. Carbon 68, 563572 (2014).Google Scholar
Fukidome, H., Abe, S., Takahashi, R., Imaizumi, K., Inomata, S., Handa, H., Saito, E., Enta, Y., Yoshigoe, A., Tareoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T., Ito, S., and Suemitsu, M.: Control over structural and electronic properties of epitaxial graphene on silicon using surface termination of 3C-SiC(111)/Si. Appl. Phys. Express 4, 115104 (2011).Google Scholar
Fukidome, H., Takahashi, R., Abe, S., Imaizumi, K., Handa, H., Kang, C.H., Karasawa, H., Suemitsu, T., Otsuji, T., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T., and Suemitsu, M.: Control of epitaxy of graphene by crystallographic orientation of a Si substrate toward device applications. J. Mater. Chem. 21, 1724217248 (2011).Google Scholar
Mishra, N., Hold, L., Iacopi, A., Gupta, B., Motta, N., and Iacopi, F.: Controlling the surface roughness of epitaxial SiC on silicon. J. Appl. Phys. 115, 203501 (2014).Google Scholar
Cunning, B.V., Ahmed, M., Mishra, N., Kermany, A.R., Wood, B., and Iacopi, F.: Graphitized silicon carbide microbeams: Wafer-level, self-aligned graphene on silicon wafers. Nanotechnology 25, 325301 (2014).CrossRefGoogle ScholarPubMed
Fukidome, H., Kawai, Y., Handa, H., Hibino, H., Miyashita, H., Kotsugi, M., Ohkochi, T., Jung, M., Suemitsu, T., Kinoshita, T., Otsuji, T., and Suemitsu, M.: Site-selective epitaxy of graphene on Si wafers. Proc. IEEE 101(7), 1557 (2013).CrossRefGoogle Scholar
Wang, L., Dimitrijev, S., Tanner, P., Han, J., Iacopi, A., Hold, L., and Harrison, B.H.: Growth of 3C-SiC on 150 mm Si (100) substrates by alternating supply epitaxy at 1000°C. Thin Solid Films 519, 64436446 (2011).Google Scholar
Iacopi, F., Walker, G., Wang, L., Malesys, L., Ma, S., Cunning, B.V., and Iacopi, A.: Orientation-dependent stress relaxation in hetero-epitaxial 3C-SiC films. Appl. Phys. Lett. 102, 011908 (2013).CrossRefGoogle Scholar
Dauskardt, R.H., Lane, M., Ma, Q., and Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141162 (1998).CrossRefGoogle Scholar
Lane, M., Dauskardt, R.H., Krishna, N., and Hashim, I.: Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. J. Mater. Res. 15, 203211 (2000).Google Scholar
Ferrari, A.C. and Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235246 (2013).Google Scholar
Iacopi, F., Cunning, B., and Ahmed, M.: Process for forming graphene layers on silicon carbide. PCT/AU2014/050218, 2014.Google Scholar
Juang, Z-Y., Wu, C-Y., Lo, C-W., Chen, W-Y., Huang, C-F., Hwang, J-C., Chen, F-R., Leou, K-C., and Tsai, C-H.: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47, 20262031 (2009).Google Scholar
Woodworth, A.A. and Stinespring, C.D.: Surface chemistry of Ni induced graphite formation on the 6H–SiC (0001) surface and its implications for graphene synthesis. Carbon 48, 19992003 (2010).Google Scholar
Lauwers, A., Steegen, A., De Potter, M., Lindsay, R., Satta, A., Bender, H., and Maex, K.: Materials aspects, electrical performance, and scalability of Ni silicide towards sub-0.13 μm technologies. J. Vac. Sci. Technol., B 19, 20262037 (2001).Google Scholar
Escobedo-Cousin, E., Vassilevski, K., Hopf, T., Wright, N., O'Neill, A., Horsfall, A., Goss, J., and Cumpson, P.: Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon. J. Appl. Phys. 113, 114309 (2013).CrossRefGoogle Scholar
The Landholt-Boernstein Database, Springer Materials online database. Springer.Google Scholar
Ouerghi, A., Belkhou, R., Marangolo, M., Silly, M.G., El Moussaoui, S., Eddrief, M., Largeau, L., Portail, M., and Sirotti, F.: Structural coherency of epitaxial graphene on 3C–SiC(111) epilayers on Si(111). Appl. Phys. Lett. 97, 161905 (2010).CrossRefGoogle Scholar
Ouerghi, A., Balan, A., Castelli, C., Picher, M., Belkhou, R., Eddrief, M., Silly, M.G., Marangolo, M., Shukla, A., and Sirotti, F.: Epitaxial graphene on single domain 3C-SiC (100) thin films grown on off-axis Si (100). Appl. Phys. Lett. 101, 021603 (2012).CrossRefGoogle Scholar
Coletti, C., Emtsev, K.V., Zacharov, A.A., Ouisse, T., Chaussende, D., and Starke, U.: Large area quasi-free standing monolayer graphene on 3C-SiC(111). Appl. Phys. Lett. 99, 081904 (2011).Google Scholar
Yazdi, G.R., Vasiliauskas, R., Iakimov, T., Zacharov, A., Syvajarvi, M., and Yakimova, R.: Growth of large area monolayer graphene on 3C-SiC and a comparison with other SiC polytypes. Carbon 57, 477484 (2013).CrossRefGoogle Scholar
Baliga, B.J.: Silicon liquid-phase epitaxy—A review. J. Electrochem. Soc. 133, C5C14 (1986).CrossRefGoogle Scholar
Wagner, R.S. and Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 8990 (1964).Google Scholar
Iacopi, F., Richard, O., Eichhammer, Y., Bender, H., Vereecken, P.M., De Gendt, S., and Heyns, M.: Size-dependent characteristics of indium-seeded Si nanowire growth. Electrochem. Solid-State Lett. 11, K98K100 (2008).Google Scholar
Koenig, S.P., Boddeti, N.G., Dunn, M.L., and Bunch, J.S.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543546 (2011).Google Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y-J., Kim, K.S., Ozyilmaz, B., Ahn, J-H., and Ijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574578 (2010).Google Scholar
Kaestle, G., Boyen, H.G., Schroeder, A., Plettl, A., and Ziemann, P.: Size effect of the resistivity of thin epitaxial gold film. Phys. Rev. B 70, 165414 (2004).Google Scholar
Kanter, H.: Slow-electron mean free path in aluminum, silver and gold. Phys. Rev. B 1(2), 522536 (1970).Google Scholar