Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T05:12:31.767Z Has data issue: false hasContentIssue false

Reactive Molecular Dynamics Study of Oxidation of Aggregated Aluminum Nanoparticles

Published online by Cambridge University Press:  04 February 2015

Ying Li
Affiliation:
Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering & Materials Science, Physics & Astronomy and Computer Science, University of Southern California, Los Angeles, CA 90089-0242, U.S.A. Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
Rajiv K. Kalia
Affiliation:
Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering & Materials Science, Physics & Astronomy and Computer Science, University of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Aiichiro Nakano
Affiliation:
Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering & Materials Science, Physics & Astronomy and Computer Science, University of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Priya Vashishta
Affiliation:
Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering & Materials Science, Physics & Astronomy and Computer Science, University of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Get access

Abstract

Oxidation behavior of aggregated aluminum nanoparticles (Al-NPs), specifically the combustion propagation, is studied, when only part of the aggregated Al-NPs is heated to 1100 K and the rest of the system is kept at 300 K. Here, multi-million atoms molecular dynamics (MD) simulation reveals the sintering/coalescence phenomena for the different diameters (D = 26, 36 and 46 nm) aggregated systems. Various consuming rates of core aluminum are investigated for different layers and different diameters aggregated systems. The formation of Al2O3 fragments outside the shell (the largest covalently bonded aluminum-oxide cluster) structure is confirmed from AlO and AlO2 intermediates. The smaller size of Al-NPs results in faster trend of transition from Al-rich to O-rich for most outside small clusters. However, more core aluminum reacts with shell oxygen leads to faster decreasing of the ratio of O/Al in the shell fragment for larger Al-NPs system.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yetter, R. A., Risha, G. A. and Son, S. F., P Combust Inst 32, 18191838 (2009).CrossRefGoogle Scholar
Mench, M. M., Kuo, K. K., Yeh, C. L. and Lu, Y. C., Combust Sci Technol 135 (16), 269292 (1998).CrossRefGoogle Scholar
Rossi, C., Zhang, K., Esteve, D., Alphonse, P., Tailhades, P. and Vahlas, C., J Microelectromech S 16(4), 919931 (2007).CrossRefGoogle Scholar
Aumann, C. E., Skofronick, G. L. and Martin, J. A., J Vac Sci Technol B 13(3), 11781183 (1995).CrossRefGoogle Scholar
Levitas, V. I., Combust Flame 156(2), 543546 (2009).CrossRefGoogle Scholar
Rai, A., Park, K., Zhou, L. and Zachariah, M. R., Combust Theor Model 10(5), 843859 (2006).CrossRefGoogle Scholar
Trunov, M. A., Umbrajkar, S. M., Schoenitz, M., Mang, J. T. and Dreizin, E. L., J Phys Chem B 110(26), 1309413099 (2006).CrossRefGoogle Scholar
Egan, G. C., Sullivan, K. T., LaGrange, T., Reed, B. W., and Zachariah, M. R., J App Phys 115, 084903: 16 (2014)CrossRefGoogle Scholar
Alavi, S., Mintmire, J. W. and Thompson, D. L., J Phys Chem B 109(1), 209214 (2005).CrossRefGoogle Scholar
Raut, J. S., Bhagat, R. B. and Fichthorn, K. A., Nanostruct Mater 10(5), 837851 (1998).CrossRefGoogle Scholar
Puri, P. and Yang, V., J Nanopart Res 12(8), 29893002 (2010).CrossRefGoogle Scholar
Ananthapadmanabhan, P. V., Thiyagarajan, T. K., Sreekumar, K. P. and Venkatramani, N., Scripta Mater 50(1), 143147 (2004).CrossRefGoogle Scholar
Chakraborty, P. and Zachariah, M. R., Combust Flame 161(9), 14081416 (2014)CrossRefGoogle Scholar
Campbell, T. J., Aral, G., Ogata, S., Kalia, R. K., Nakano, A. and Vashishta, P., Phys Rev B 71(20) (2005).CrossRefGoogle Scholar
Wang, W. Q., Clark, R., Nakano, A., Kalia, R. K. and Vashishta, P., Appl Phys Lett 95(26) (2009).Google Scholar
Wang, W. Q., Clark, R., Nakano, A., Kalia, R. K. and Vashishta, P., Appl Phys Lett 96(18) (2010).Google Scholar
Li, Y., Kalia, R. K., Nakano, A. and Vashishta, P., J App Phys 114, 134312: 110 (2013).Google Scholar
Vashishta, P., Nakano, A., Kalia, R. K. and Ebbsjo, I., Mat Sci Eng B-Solid 37 (13), 5671 (1996).CrossRefGoogle Scholar
Cohen, J. M. and Voter, A. F., Surf Sci 313(3), 439447 (1994).CrossRefGoogle Scholar
Piehler, T. N., DeLucia, F. C., Munson, C. A., Homan, B. E., Miziolek, A. W. and McNesby, K. L., Appl Optics 44(18), 36543660 (2005).CrossRefGoogle Scholar