Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-11T20:11:17.785Z Has data issue: false hasContentIssue false

Polymer-derived Ceramics as Innovative Oxidation Barrier Coatings for Mo-Si-B Alloys

Published online by Cambridge University Press:  02 February 2015

Manja Krüger
Affiliation:
Otto-von-Guericke University Magdeburg, Institute for Materials and Joining Technology, P.O. Box 4120, D-39016 Magdeburg, Germany
Georg Hasemann
Affiliation:
Otto-von-Guericke University Magdeburg, Institute for Materials and Joining Technology, P.O. Box 4120, D-39016 Magdeburg, Germany
Torben Baumann
Affiliation:
Otto-von-Guericke University Magdeburg, Institute for Materials and Joining Technology, P.O. Box 4120, D-39016 Magdeburg, Germany
Sebastian Dieck
Affiliation:
Otto-von-Guericke University Magdeburg, Institute for Materials and Joining Technology, P.O. Box 4120, D-39016 Magdeburg, Germany
Stefan Rannabauer
Affiliation:
Otto-von-Guericke University Magdeburg, Institute for Materials and Joining Technology, P.O. Box 4120, D-39016 Magdeburg, Germany
Get access

Abstract

Three phase Mo-Mo3Si-Mo5SiB2 alloys possess excellent mechanical properties over a wide temperature range. The Mo solid solution phase is needed for balanced mechanical properties at room temperature. However, this phase suffers from catastrophic oxidation behavior at high temperatures caused by the formation and evaporation of MoO3. The oxidation resistance of three phase alloys benefits from a high volume fraction of intermetallic phases. In particular Mo5SiB2 leads to the formation of a borosilicate protective glassy layer on the material’s surface while exposed to air at elevated temperatures. Hence, it is unlikely to identify alloy compositions that will yield both optimum mechanical and oxidation performance.

Different coating systems and techniques, such as pack cementation, magnetron sputtering and plasma spraying are discussed in the literature to control the oxidation properties of Mo-based alloys. A different approach is to apply coating systems based on polymer derived ceramics (PDCs). Our present work introduces PDCs as a new type of promising and innovative oxidation-protective coatings for high temperature Mo-based alloys. After dip-coating with perhydropolysilazane (PHPS) and pyrolysis at 800 °C, dense and well-adhered SiNO ceramic layers could be achieved. These were investigated by scanning electron microscopy. Cyclic oxidation tests at 800 °C and 1100 °C were performed to investigate mass changes due to the thermal treatment. Indeed, even thin pyrolyzed PHPS layers with a thickness of around 70 nm to 175 nm protected the Mo-Si-B substrate during the initial stage of oxidation. By increasing the silicon oxide concentration at the material’s surface a first oxidation barrier was provided and thus, the strong initial mass loss could be decreased as compared to uncoated alloys. Furthermore, first results of the ongoing optimization process on PDC-coatings applied to Mo-Si-B alloys will be presented, involving the enhancement of the coating´s thickness or varying pyrolysis atmospheres.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dimiduk, D.M., Perepezko, J.H., MRS Bull. 28 (2003) 639.CrossRefGoogle Scholar
Bewlay, B.P., Jackson, M.R., Zhao, J.C., Subramanian, P.R., Mendiratta, M.G., Lewandowski, J.J., MRS Bull. 28 (2003) 646.CrossRefGoogle Scholar
Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R., Ishida, K., Science 312 (2006) 90.CrossRefGoogle Scholar
Bölitz, M.-C., Brunner, M., Völkl, R., Mukherji, D., Roesler, J., Glatzel, U., Int. J. Mater. Res. 103 (2012) 554.CrossRefGoogle Scholar
Nikulina, E., Durst, K., Göken, M., Völkl, R., Glatzel, U., Int. J. Mater. Res. 101 (2010) 585.CrossRefGoogle Scholar
Schneibel, J.H., Liu, C.T., Heatherly, L., Kramer, M.J., Scr. Mater. 38 (2008) 1169.CrossRefGoogle Scholar
Berczik, D., US Pat. 5,595,616; 5,693,156, East Hartfort, United Technol. Corp. (1997).Google Scholar
Yang, Y., Bewlay, B.P., Chen, S., Chang, Y.A., Trans. Nonferrous Met. Soc. China 17 (2007) 1396.CrossRefGoogle Scholar
Sakidja, R., Perepezko, J.H., J. Nucl. Mater. 366 (2007) 407.CrossRefGoogle Scholar
Nowotny, H., Dimakopoulou, E., Kudielka, H., Mh. Chem. 88 (1957) 180.Google Scholar
Akinc, M., Meyer, M.K., Kramer, M.J., Thom, A.J., Huebsch, J.J., Cook, B., Mater. Sci. Eng. A 261 (1999) 16.CrossRefGoogle Scholar
Meyer, M.K., Thom, A.J., Akinc, M., Intermetallics 7 (1999) 153.CrossRefGoogle Scholar
Ihara, K., Ito, K., Tanaka, K., Yamaguchi, M., Mater. Sci. Eng. A 329331 (2002) 222.CrossRefGoogle Scholar
Rosales, I., Schneibel, J., Intermetallics 8 (2000) 885.CrossRefGoogle Scholar
Chu, F., Thoma, D.J., McClellan, K., Peralta, P., He, Y., Intermetallics 7 (1999) 611.CrossRefGoogle Scholar
Schneibel, J.H., Kramer, M.J., Ünal, Ö., Wright, R.N., Intermetallics 9 (2001) 25.CrossRefGoogle Scholar
Schneibel, J.H., Kramer, M.J., Easton, D.S., Scr. Mater. 46 (2002) 217.CrossRefGoogle Scholar
Nieh, T., Wang, J., Liu, C., Intermetallics 9 (2001) 73.CrossRefGoogle Scholar
Parthasarathy, T.A., Mendiratta, M.G., Dimiduk, D.M., Acta Mater. 50 (2002) 1857.CrossRefGoogle Scholar
Paswan, S., Mitra, R., Roy, S.K., Intermetallics 15 (2007) 1217.CrossRefGoogle Scholar
Burk, S., Gorr, B., Trindade, V.B., Krupp, U., Christ, H.-J., Corros. Eng. Sci. Technol. 44 (2009) 168.CrossRefGoogle Scholar
Burk, S., Christ, H.J., Adv. Mater. Res. 278 (2011) 587.CrossRefGoogle Scholar
Burk, S., Gorr, B., Krüger, M., Heilmaier, M., Christ, H., JOM 63 (2011) 32.CrossRefGoogle Scholar
Perepezko, J.H., Sakidja, R., Adv. Eng. Mater. 11 (2009) 892.CrossRefGoogle Scholar
Rioult, F.A., Imhoff, S.D., Sakidja, R., Perepezko, J.H., Acta Mater. 57 (2009) 4600.CrossRefGoogle Scholar
Supatarawanich, V., Johnson, D., Liu, C., Mater. Sci. Eng. A 344 (2003) 328.CrossRefGoogle Scholar
Jéhanno, P., Heilmaier, M., Kestler, H., Intermetallics 12 (2004) 1005.CrossRefGoogle Scholar
Krüger, M., Franz, S., Saage, H., Heilmaier, M., Schneibel, J.H., Jéhanno, P., Böning, M., Kestler, H., Intermetallics 16 (2008) 933.CrossRefGoogle Scholar
Hassomeris, O., Schumacher, G., Krüger, M., Heilmaier, M., Banhart, J., Intermetallics 19 (2011) 470.CrossRefGoogle Scholar
Krüger, M., Jain, P., Kumar, K.S., Heilmaier, M., Intermetallics 48 (2014) 10.CrossRefGoogle Scholar
Majumdar, S., Sharma, I.G., Intermetallics 19 (2011) 541.CrossRefGoogle Scholar
Park, J.S., Sakidja, R., Perepezko, J.H., Scr. Mater. 46 (2002) 765.CrossRefGoogle Scholar
Perepezko, J.H., Sakidja, R., JOM 65 (2013) 307.CrossRefGoogle Scholar
Ito, K., Hayashi, T., Yokobayshi, M., Murakami, T., Numakura, H., Metall. Mater. Trans. A 36A (2005) 627.CrossRefGoogle Scholar
Hayashi, T., Ito, K., Numakura, H., Intermetallics 13 (2005) 93.CrossRefGoogle Scholar
Perepezko, J., Sakidja, R., JOM 62 (2010) 13.CrossRefGoogle Scholar
Lange, A., Braun, R., Heilmaier, M., Intermetallics 48 (2014) 19.CrossRefGoogle Scholar
Colombo, P., Mera, G., Riedel, R., Sorarù, G.D., J. Am. Ceram. Soc. 93 (2010) 1805.Google Scholar
Torrey, J.D., Bordia, R.K., J. Am. Ceram. Soc. 91 (2008) 41.CrossRefGoogle Scholar
Günthner, M., Kraus, T., Dierdorf, A., Decker, D., Krenkel, W., Motz, G., J. Eur. Ceram. Soc. 29 (2009) 2061.CrossRefGoogle Scholar
Günthner, M., Kraus, T., Krenkel, W., Motz, G., Dierdorf, A., Decker, D., Int. J. Appl. Ceram. Technol. 6 (2009) 373.CrossRefGoogle Scholar
Günthner, M., Schütz, A., Glatzel, U., Wang, K., Bordia, R.K., Greißl, O., Krenkel, W., Motz, G., J. Eur. Ceram. Soc. 31 (2011) 3003.CrossRefGoogle Scholar
Nunes, C.A., Sakidja, R., Perepezko, J., in:, Nathal, M. V., Darolia, R., Liu, C. T., Martin, P. L., Miracle, D. B., Wagner, R., Yamaguchi, M. (Eds.). Struct. Intermet. 2001 (ISSI-3), Miner. Met. Mater. Soc. Warrandale, PA (1997), n.d., pp. 831839.Google Scholar
Heilmaier, M., Krüger, M., Saage, H., Rösler, J., Mukherji, D., Glatzel, U., Völkl, R., Hüttner, R., Eggeler, G., Somsen, C., Depka, T., Christ, H.-J., Gorr, B., Burk, S., JOM 61 (2009) 61.CrossRefGoogle Scholar
Wilson, S.D.R., J. Eng. Math. 16 (1982) 209.CrossRefGoogle Scholar
Wang, K., Günthner, M., Motz, G., Bordia, R.K., J. Eur. Ceram. Soc. 31 (2011) 3011.CrossRefGoogle Scholar