Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-15T11:19:06.911Z Has data issue: false hasContentIssue false

Nanoscale mapping of in situ actuating microelectromechanical systems with AFM

Published online by Cambridge University Press:  26 January 2015

Manuel Rivas
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
Varun Vyas
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
Aliya Carter
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
James Veronick
Affiliation:
Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
Yusuf Khan
Affiliation:
Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
Oleg V. Kolosov
Affiliation:
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
Ronald G. Polcawich
Affiliation:
US Army Research Laboratory, Micro and Nano Electronic Materials and Devices Branch, Adelphi, Maryland 20783, USA
Bryan D. Huey*
Affiliation:
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
*
a)Address all correspondence to this author. e-mail: bhuey@ims.uconn.edu
Get access

Abstract

Microelectromechanical systems (MEMS) are increasingly at our fingertips. To understand and thereby improve their performance, especially given their ever-decreasing sizes, it is crucial to measure their functionality in situ. Atomic force microscopy (AFM) is well suited for such studies, allowing nanoscale lateral and vertical resolution of static displacements, as well as mapping of the dynamic response of these physically actuating microsystems. In this work, the vibration of a tuning fork based viscosity sensor is mapped and compared to model experiments in air, liquid, and a curing collagen gel. The switching response of a MEMS switch with nanosecond time-scale activation is also monitored – including mapping resonances of the driving microcantilever and the displacement of an overhanging contact structure in response to periodic pulsing. Such nanoscale in situ AFM investigations of MEMS can be crucial for enhancing modeling, design, and the ultimate performance of these increasingly important and sophisticated devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boussaad, S. and Tao, N.J.: Polymer wire chemical sensor using a microfabricated tuning fork. Nano Lett. 3(8), 11731176 (2003).Google Scholar
Zhang, J. and O'Shea, S.: Tuning forks as micromechanical mass sensitive sensors for bio- or liquid detection. Sens. Actuators, B 94(1), 6572 (2003).Google Scholar
Zeisel, D., Menzi, H., and Ullrich, L.: A precise and robust quartz sensor based on tuning fork technology for (SF6)-gas density control. Sens. Actuators, A 80(3), 233236 (2000).Google Scholar
Zhou, X.F., Jiang, T., Zhang, J., Wang, X.H., and Zhu, Z.Q.: Humidity sensor based on quartz tuning fork coated with sol-gel-derived nanocrystalline zinc oxide thin film. Sens. Actuators, B 123(1), 299305 (2007).Google Scholar
Todorovic, M. and Schultz, S.: Miniature high-sensitivity quartz tuning fork alternating gradient magnetometry. Appl. Phys. Lett. 73(24), 35953597 (1998).Google Scholar
Kosterev, A.A., Tittel, F.K., Serebryakov, D.V., Malinovsky, A.L., and Morozov, I.V.: Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76(4), 043105 (2005).Google Scholar
Azevedo, R.G., Jones, D.G., Jog, A.V., Jamshidi, B., Myers, D.R., Chen, L., Fu, X.A., Mehregany, M., Wijesundara, M.B.J., and Pisano, A.P.: A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens. J. 7(3–4), 568576 (2007).Google Scholar
Matsiev, L., Bennett, J., and Kolosov, O.: High precision tuning fork sensor for liquid property measurements. In 2005 IEEE Ultrasonics Symposium, New York, van der Steen, T. and Hossack, J. eds.; Vol. 3, 2005; pp. 14921495.CrossRefGoogle Scholar
Buhrdorf, A., Dobrinski, H., Ludtke, O., Bennett, J., Matsiev, L., Uhrich, M., and Kolosov, O.: Multiparameteric Oil Condition Sensor Based on the Tuning Fork Technology for Automotive Applications (Springer-Verlag, Berlin, 2005).Google Scholar
Sassen, S., Voss, R., Schalk, J., Stenzel, E., Gleissner, T., Gruenberger, R., Neubauer, F., Ficker, W., Kupke, W., Bauer, K., and Rose, M.: Tuning fork silicon angular rate sensor with enhanced performance for automotive applications. Sens. Actuators, A 83(1–3), 8084 (2000).Google Scholar
Giessibl, F.J.: High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73(26), 39563958 (1998).Google Scholar
Dunn, R.C.: Near-field scanning optical microscopy. Chem. Rev. 99(10), 2891 (1999).Google Scholar
Gao, F.L., Li, X.D., Wang, J., and Fu, Y.: Dynamic behavior of tuning fork shear-force structures in a SNOM system. Ultramicroscopy 142, 1023 (2014).Google Scholar
Lee, Y., Ding, Z.F., and Bard, A.J.: Combined scanning electrochemical/optical microscopy with shear force and current feedback. Anal. Chem. 74(15), 36343643 (2002).Google Scholar
Custance, O., Perez, R., and Morita, S.: Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4(12), 803810 (2009).Google Scholar
Picco, L.M., Bozec, L., Ulcinas, A., Engledew, D.J., Antognozzi, M., Horton, M.A., and Miles, M.J.: Breaking the speed limit with atomic force microscopy. Nanotechnology 18(4), 044030 (2007).CrossRefGoogle Scholar
Clubb, D.O., Buu, O.V.L., Bowley, R.M., Nyman, R., and Owers-Bradley, J.R.: Quartz tuning fork viscometers for helium liquids. J. Low Temp. Phys. 136(1–2), 113 (2004).Google Scholar
Bradley, D.I., Clovecko, M., Fisher, S.N., Garg, D., Guise, E., Haley, R.P., Kolosov, O., Pickett, G.R., Tsepelin, V., Schmoranzer, D., and Skrbek, L.: Crossover from hydrodynamic to acoustic drag on quartz tuning forks in normal and superfluid (4)He. Phys. Rev. B 85(1), 014501 (2012).Google Scholar
Ahlstrom, S.L., Bradley, D.I., Človečko, M., Fisher, S.N., Guénault, A.M., Guise, E.A., Haley, R.P., Kolosov, O., Kumar, M., McClintock, P.V.E., Pickett, G.R., Polturak, E., Poole, M., Todoshchenko, I., Tsepelin, V., and Woods, A.J.: Response of a mechanical oscillator in solid 4He. J. Low Temp. Phys. 175(1–2), 140146 (2014).Google Scholar
Soderkvist, J.: Micromachined gyroscopes. Sens. Actuators, A 43(1–3), 6571 (1994).Google Scholar
Zaman, M.F., Sharma, A., Hao, Z.L., and Ayazi, F.: A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability. J. Microelectromech. Syst. 17(6), 15261536 (2008).Google Scholar
Lemkin, M. and Boser, B.E.: A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE J. Solid-State Circuits 34(4), 456468 (1999).Google Scholar
Dayton, D., Gonglewski, J., Restaino, S., Martin, J., Phillips, J., Hartman, M., Browne, S., Kervin, P., Snodgrass, J., Heimann, N., Shilko, M., Pohle, R., Carrion, B., Smith, C., and Thiel, D.: Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites. Opt. Express 10(25), 15081519 (2002).Google Scholar
Doble, N. and Williams, D.R.: The application of MEMS technology for adaptive optics in vision science. IEEE J. Sel. Top. Quantum Electron. 10(3), 629635 (2004).Google Scholar
Tuantranont, A. and Bright, V.M.: Segmented silicon-micromachined microelectromechanical deformable mirrors for adaptive optics. IEEE J. Sel. Top. Quantum Electron. 8(1), 3345 (2002).Google Scholar
Van Kessel, P.F., Hornbeck, L.J., Meier, R.E., and Douglass, M.R.: MEMS-based projection display. Proc. IEEE 86(8), 16871704 (1998).Google Scholar
Brown, E.R.: RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans. Microwave Theory Tech. 46(11), 18681880 (1998).CrossRefGoogle Scholar
Bannon, F.D., Clark, J.R., and Nguyen, C.T.C.: High-Q HF microelectromechanical filters. IEEE J. Solid-State Circuits 35(4), 512526 (2000).Google Scholar
Proie, R.M., Polcawich, R.G., Pulskamp, J.S., Ivanov, T., and Zaghloul, M.E.: Development of a PZT MEMS switch architecture for low-power digital applications. J. Microelectromech. Syst. 20(4), 10321042 (2011).Google Scholar
Nguyen, C.T.C.: MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 251270 (2007).Google Scholar
Knappe, S., Shah, V., Schwindt, P.D.D., Hollberg, L., Kitching, J., Liew, L.A., and Moreland, J.: A microfabricated atomic clock. Appl. Phys. Lett. 85(9), 14601462 (2004).Google Scholar
Verpoorte, E. and De Rooij, N.F.: Microfluidics meets MEMS. Proc. IEEE 91(6), 930953 (2003).Google Scholar
Nguyen, N.T., Huang, X.Y., and Chuan, T.K.: MEMS-micropumps: A review. J. Fluids Eng. 124(2), 384392 (2002).Google Scholar
Lee, G.B., Chen, S.H., Huang, G.R., Sung, W.C., and Lin, Y.H.: Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens. Actuators, B 75(1–2), 142148 (2001).Google Scholar
Grayson, A.C.R., Shawgo, R.S., Johnson, A.M., Flynn, N.T., Li, Y.W., Cima, M.J., and Langer, R.: A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 92(1), 621 (2004).Google Scholar
Voldman, J., Gray, M.L., and Schmidt, M.A.: Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1, 401425 (1999).Google Scholar
Ziaie, B., Baldi, A., Lei, M., Gu, Y.D., and Siegel, R.A.: Hard and soft micromachining for BioMEMS: Review of techniques and examples of applications in microfluidics and drug delivery. Adv. Drug Delivery Rev. 56(2), 145172 (2004).Google Scholar
Kotzar, G., Freas, M., Abel, P., Fleischman, A., Roy, S., Zorman, C., Moran, J.M., and Melzak, J.: Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 23(13), 27372750 (2002).Google Scholar
Pulskamp, J.S., Polcawich, R.G., Rudy, R.Q., Bedair, S.S., Proie, R.M., Ivanov, T., and Smith, G.L.: Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications. MRS Bull. 37(11), 10621070 (2012).Google Scholar
Osterberg, P.M. and Senturia, S.D.: M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6(2), 107118 (1997).Google Scholar
Beeby, S.P., Tudor, M.J., and White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175R195 (2006).Google Scholar
Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S., and Green, T.C.: MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 115(2–3), 523529 (2004).Google Scholar
Spearing, S.M.: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48(1), 179196 (2000).CrossRefGoogle Scholar
Muralt, P., Polcawich, R.G., and Trolier-McKinstry, S.: Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull. 34(9), 658664 (2009).Google Scholar
Pulskamp, J.S., Bedair, S.S., Polcawich, R.G., Smith, G.L., Martin, J., Power, B., and Bhave, S.A.: Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(5), 10431060 (2012).Google Scholar
Maboudian, R., Ashurst, W.R., and Carraro, C.: Self-assembled monolayers as anti-stiction coatings for MEMS: Characteristics and recent developments. Sens. Actuators, A 82(1–3), 219223 (2000).CrossRefGoogle Scholar
Delrio, F.W., De Boer, M.P., Knapp, J.A., Reedy, E.D., Clews, P.J., and Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4(8), 629634 (2005).Google Scholar
Kimberley, J., Lambros, J., Chasiotis, I., Pulskamp, J., Polcawich, R., and Dubey, M.: A hybrid experimental/numerical investigation of the response of multilayered MEMS devices to dynamic loading. Exp. Mech. 50(4), 527544 (2010).Google Scholar
Rembe, C., Kant, R., and Muller, R.S.: Optical measurement methods to study dynamic behavior in MEMS. In Proc. SPIE 4400, Microsystems Engineering: Metrology and Inspection, SPIE-Int Soc Optical Engineering, Bellingham, 2001; pp. 127137.Google Scholar
Espinosa, H.D., Prorok, B.C., and Fischer, M.: A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J. Mech. Phys. Solids 51(1), 4767 (2003).Google Scholar
Sharpe, W.N., Pulskamp, J., Gianola, D.S., Eberl, C., Polcawich, R.G., and Thompson, R.J.: Strain measurements of silicon dioxide microspecimens by digital imaging processing. Exp. Mech. 47(5), 649658 (2007).Google Scholar
Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., and Shen, Y.L.: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55(12), 40154039 (2007).Google Scholar
Lee, S.W., Meza, L., and Greer, J.R.: Cryogenic nanoindentation size effect in 001 -oriented face-centered cubic and body-centered cubic single crystals. Appl. Phys. Lett. 103(10), 101906 (2013).Google Scholar
Nili, H., Kalantar-zadeh, K., Bhaskaran, M., and Sriram, S.: In situ nanoindentation: Probing nanoscale multifunctionality. Prog. Mater. Sci. 58(1), 129 (2013).Google Scholar
Xu, Z-H., Sutton, M.A., and Li, X.: Mapping nanoscale wear field by combined atomic force microscopy and digital image correlation techniques. Acta Mater. 56(20), 63046309 (2008).Google Scholar
Liu, H.W. and Bhushan, B.: Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy 97(1–4), 321340 (2003).Google Scholar
Bhushan, B., Kwak, K.J., and Palacio, M.: Nanotribology and nanomechanics of AFM probe-based data recording technology. J. Phys.: Condens. Matter 20(36), 365207 (2008).Google Scholar
Abir, R., Roizman, P., Fisch, B., Nitke, S., Okon, E., Orvieto, R., and Ben Rafael, Z.: Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum. Reprod. 14(5), 12991301 (1999).Google Scholar
Proie, R.M., Ivanov, T., Pulskamp, J.S., and Polcawich, R.G.: A compact, low loss piezoelectric RF MEMS relay with sub 100-ns switching times. In 2012 IEEE MTT-S International Microwave Symposium Digest (MTT), Montreal, Canada, 2012.Google Scholar
Sanchez, L., Potrepka, D., Fox, G., Takeuchi, I., and Polcawich, R.G.: Optimization of PbTiO3 seed layers and Pt metallization for PZT based PiezoMEMS actuators. J. Mater. Res. 28, 19201931 (2013).Google Scholar
Bosse, J.L. and Huey, B.D.: Error-corrected AFM: A simple and broadly applicable approach for substantially improving AFM image accuracy. Nanotechnology 25(15), 155704 (2014).Google Scholar
Xu, J., You, B., and Zhao, X.F.: Development of quartz tuning fork temperature sensors. Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, 2008. SPAWDA 2008, New York, 2008.Google Scholar
Humphris, A.D.L., Miles, M.J., and Hobbs, J.K.: A mechanical microscope: High-speed atomic force microscopy. Appl. Phys. Lett. 86(3), 034106 (2005).Google Scholar
Bosse, J.L., Grishin, I., Kolosov, O.V., and Huey, B.D.: Multidimensional SPM applied for nanoscale conductance mapping. J. Mater. Res. 28(24), 33113321 (2013).Google Scholar
Kutes, Y.: Nanoscale photovoltaic mapping. Ph.D. Thesis, University of Connecticut, 2014.Google Scholar
Huey, B.D.: AFM and acoustics: Fast, quantitative nanomechanical mapping. Annu. Rev. Mater. Res. 37, 351385 (2007).Google Scholar
Bosse, J., Lee, S., Huey, B., Andersen, A., and Sutherland, D.: High speed friction microscopy and nanoscale friction coefficient mapping. Meas. Sci. Technol. 25(11), 115401 (2014).Google Scholar
Pulskamp, J.S., Proie, R.M., and Polcawich, R.G.: Nano- and micro-electromechanical switch dynamics. J. Micromech. Microeng. 24, 11 (2014).Google Scholar
Supplementary material: File

Rivas supplementary material

Supplementary figures

Download Rivas supplementary material(File)
File 1.1 MB