Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T03:34:12.553Z Has data issue: false hasContentIssue false

Predation on artificial caterpillars is higher in countryside than near-natural forest habitat in lowland south-western Costa Rica

Published online by Cambridge University Press:  26 January 2015

Carlo Lutz Seifert*
Affiliation:
Division of Tropical Ecology and Animal Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
Lisamarie Lehner
Affiliation:
Division of Tropical Ecology and Animal Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
Marc-Oliver Adams
Affiliation:
Division of Tropical Ecology and Animal Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
Konrad Fiedler
Affiliation:
Division of Tropical Ecology and Animal Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
*
1Corresponding author. Email: carlo_seifert@web.de

Abstract:

Predation pressure is essential in regulating population dynamics of herbivorous insects. We used artificial caterpillars (25 × 4 mm) made from brown-or green-coloured plasticine to compare predation pressure between countryside and near-natural rain-forest habitat in the Gulfo Dulce region (Costa Rica). Within each habitat, 162 caterpillars were placed randomly on different substrates along a 1200-m transect and at heights between 0.5 and 2.0 m. Artificial caterpillars were inspected at 24-h intervals for 3 consecutive days. Predation pressure was almost twice as high for countryside (mean attack frequency per capita: 1.11 ± 0.08 SE) compared with rain forest (0.66 ± 0.07 SE). In both habitats arthropods emerged as chief predator group, followed by birds. Attacks by non-volant mammals were very rare and restricted to rain-forest sites. In the countryside, bird attacks were more than four times as common as in forest, indicating a change in their relative importance across habitats.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BRÜHL, C. A. & ELTZ, T. 2010. Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodiversity and Conservation 19:519529.CrossRefGoogle Scholar
COLEY, P. D. & BARONE, J. A. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27:305335.Google Scholar
FLOREN, A., BIUN, A. & LINSENMAIR, K. E. 2002. Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131:137144.CrossRefGoogle ScholarPubMed
HAIRSTON, N. G., SMITH, F. E. & SLOBODKIN, L. B. 1960. Community structure, population control, and competition. American Naturalist 94:421425.Google Scholar
HÖLLDOBLER, B. & WILSON, E. O. 1990. The ants. Springer, Berlin. 732 pp.Google Scholar
HOWE, A., LÖVEI, G. L. & NACHMAN, G. 2009. Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomologia Experimentalis et Applicata 131:325329.Google Scholar
HUGHES, J. B., DAILY, G. C. & EHRLICH, P. R. 2002. Conservation of tropical forest birds in countryside habitats. Ecology Letters 5:121129.CrossRefGoogle Scholar
KOH, L. P. & MENGE, D. N. L. 2006. Rapid assessment of Lepidoptera predation rates in Neotropical forest fragments. Biotropica 38:132134.CrossRefGoogle Scholar
LOISELLE, B. A. & FARJI-BRENER, A. G. 2002. What's up? An experimental comparison of predation levels between canopy and understory in a tropical wet forest. Biotropica 34:327330.Google Scholar
LOW, P. A., SAM, K., MCARTHUR, C., POSA, M. R. C. & HOCHULI, D. F. 2014. Determining predator identity from attack marks left in model caterpillars: guidelines for best practice. Entomologia Experimentalis et Applicata 152:120126.Google Scholar
MASSAD, T. J., BALCH, J. K., DAVIDSON, E. A., BRANDO, P. M., MEWS, C. L., PORTO, P., QUINTINO, R. M., VIEIRA, S. A., JUNIOR, B. H. M. & TRUMBORE, S. E. 2013. Interactions between repeated fire, nutrients, and insect herbivores affect the recovery of diversity in the southern Amazon. Oecologia 172:219229.CrossRefGoogle ScholarPubMed
METCALFE, D. B., ASNER, G. P., MARTIN, R. E., SILVA ESPEJO, J. E., HUASCO, W. H., FARFÁN AMÉZQUITA, F. F., CARRANZA-JIMENEZ, L., GALIANO CABRERA, D. F., BACA, L. D., SINCA, F., HUARACA QUISPE, L. P., TAYPE, I. A., MORA, L. E., DÁVILA, A. R., SOLÓRZANO, M. M., PUMA VILCA, B. L., LAUPA ROMÁN, J. M., GUERRA BUSTIOS, P. C., REVILLA, N. S., TUPAYACHI, R., GIRARDIN, C. A. J., DOUGHTY, C. E. & MALHI, Y. 2014. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecology Letters 17:324332.Google Scholar
PHILPOTT, S. M., PERFECTO, I., ARMBRECHT, I. & PARR, C. L. 2010. Ant diversity and function in disturbed and changing habitats. Pp. 137156 in Lach, L., Parr, C. L. & Abbott, K. L. (eds.). Ant ecology. Oxford University Press, Oxford.Google Scholar
POSA, M. R. C., SODHI, N. S. & KOH, L. P. 2007. Predation on artificial nests and caterpillar models across a disturbance gradient in Subic Bay, Philippines. Journal of Tropical Ecology 23:2733.CrossRefGoogle Scholar
REMMEL, T., DAVISON, J. & TAMMARU, T. 2011. Quantifying predation on folivorous insect larvae: the perspective of life-history evolution. Biological Journal of the Linnean Society 104:118.Google Scholar
RICHARDS, L. A. & COLEY, P. D. 2007. Seasonal and habitat differences affect the impact of food and predation on herbivores: a comparison between gaps and understory of a tropical forest. Oikos 116:3140.Google Scholar
RUIZ-GUERRA, B., RENTON, K. & DIRZO, R. 2012. Consequences of fragmentation of tropical moist forest for birds and their role in predation of herbivorous insects. Biotropica 44:228236.Google Scholar
SAM, K., KOANE, B. & NOVOTNY, V. 2014. Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography. doi: 10.1111/ecog.00979.Google Scholar
SCHULZE, C. H. & RIEDL, I. 2008. Bird assemblages of forested and countryside habitats in the Pacific lowlands of southern Costa Rica. Pp. 395408 in Weissenhofer, A., Huber, W., Mayer, V., Pamperl, S., Weber, A. & Aubrecht, G. (eds.). Natural and cultural history of the Golfo Dulce Region, Costa Rica. Stapfia 88, Biologiezentrum des Oberösterreichischen Landesmuseums, Linz.Google Scholar
WEISSENHOFER, A. & HUBER, W. 2008. The climate of the Esquinas rainforest. Pp. 5962 in Weissenhofer, A., Huber, W., Mayer, V., Pamperl, S., Weber, A., Aubrecht, G. (eds.). Natural and cultural history of the Golfo Dulce Region, Costa Rica. Stapfia 88, Biologiezentrum des Oberösterreichischen Landesmuseums, Linz.Google Scholar
WEISSENHOFER, A., HUBER, W., MAYER, V., PAMPERL, S., WEBER, A. & AUBRECHT, G. 2008. Natural and cultural history of the Golfo Dulce Region, Costa Rica. Stapfia 88, Biologiezentrum des Oberösterreichischen Landesmuseums, Linz.Google Scholar
YOUNG, H. S., MCCAULEY, D. J., DUNBAR, R. B., HUTSON, M. S., TER-KUILE, A. M. & DIRZO, R. 2013. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems. Ecology 94:692701.Google Scholar