Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T16:22:42.631Z Has data issue: false hasContentIssue false

Experimental study of bedforms obtained with floating particles in a pipe flow

Published online by Cambridge University Press:  20 January 2015

D. Edelin*
Affiliation:
Laboratoire de Thermocinetique de Nantes, CNRS UMR 6607, Rue Christian Pauc, École Polytechnique de l’Université_de Nantes, 44300 Nantes, France
C. Josset
Affiliation:
Laboratoire de Thermocinetique de Nantes, CNRS UMR 6607, Rue Christian Pauc, École Polytechnique de l’Université_de Nantes, 44300 Nantes, France
C. Castelain
Affiliation:
Laboratoire de Thermocinetique de Nantes, CNRS UMR 6607, Rue Christian Pauc, École Polytechnique de l’Université_de Nantes, 44300 Nantes, France
F. Fayolle
Affiliation:
GEPEA, UMR 6144 CNRS, Rue de la Géraudière, ONIRIS Departement Génie des Procédés Alimentaires, 44322 Nantes, France
*
Email address for correspondence: denis.edelin@univ-nantes.fr

Abstract

We investigate experimentally the formation of bedforms caused by the sustained flow of water and solid particles in a circular pipe ($\varnothing =30~\text{mm}$). The special feature of the tests carried out was the use of floating particles ($d=756~{\rm\mu}\text{m}$, ${\it\rho}_{s}=907~\text{kg}~\text{m}^{-3}$) whereas bedforms are usually studied with sedimental materials. A closed loop was used, so that the solid flux could be maintained for an infinite time. The finite size of the tube led to the saturation of the growth of the vortex ripples produced. For the set of parameters studied, the threshold of motion was obtained within a range of laminar to low turbulent flow. The saturated state was studied to characterise it for different flow rates and solid loads. The frequency, wavelength and propagating velocity of ripples were determined using different methodologies based on image analysis and pressure analysis. The frequency and propagating velocity show a clear linear dependence on the initial Shields number, while the wavelength seems to be constant in our experiments.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreotti, B., Claudin, P. & Pouliquen, O. 2006 Aeolian sand ripples: experimental study of saturated states. Phys. Rev. Lett. 96, 028001.CrossRefGoogle Scholar
Andreotti, B., Claudin, P. & Pouliquen, O. 2010 Measurements of the aeolian sand transport saturation length. Geomorphology 123 (3–4), 343348.Google Scholar
Blondeaux, P. 1990 Sand ripples under sea waves. Part 1. Ripple formation. J. Fluid Mech. 218, 117.Google Scholar
Carman, P. C. 1937 Fluid flow through granular beds. Trans. Inst. Chem. Engrs Lond. 15, 150166.Google Scholar
Charru, F., Andreotti, B. & Claudin, P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech. 45 (1), 469493.CrossRefGoogle Scholar
Charru, F. & Hinch, E. J. 2006a Ripple formation on a particle bed sheared by a viscous liquid. Part 1. Steady flow. J. Fluid Mech. 550, 111121.Google Scholar
Charru, F. & Hinch, E. J. 2006b Ripple formation on a particle bed sheared by a viscous liquid. Part 2. Oscillating flow. J. Fluid Mech. 550, 123137.Google Scholar
Churchill, S. W. 1977 Friction factor equations spans all fluid-flow ranges. Chem. Engng J. 7, 9192.Google Scholar
Coleman, S. & Melville, B. 1996 On the determination of ripple geometry. J. Hydraul. Engng 122 (6), 301310.Google Scholar
Coleman, S. E. & Eling, B. 2000 Sand wavelets in laminar open-channel flows. J. Hydraul. Res. 38 (5), 331338.Google Scholar
Dey, S. & Papanicolaou, A. 2008 Sediment threshold under stream flow: a state-of-the-art review. KSCE J. Civil Engng 12 (1), 4560.CrossRefGoogle Scholar
Doppler, D., Gondret, P., Loiseleux, T., Meyer, S. & Rabaud, M. 2007 Relaxation dynamics of water-immersed granular avalanches. J. Fluid Mech. 577, 161181.CrossRefGoogle Scholar
Doppler, D., Loiseleux, T., Gondret, P. & Rabaud, M. 2004 Incipient grain transport and pattern formation at a sand surface sheared by a continuous laminar flow—part II: large bed slope – avalanche dominated regimes. In Proceedings of the 2nd International Workshop on Marine Sandwave and River Dune Dynamics, University of Twente, Enschede.Google Scholar
Engelund, F. 1970 Instability of erodible beds. J. Fluid Mech. 42 (2), 225244.CrossRefGoogle Scholar
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395457.Google Scholar
Friedrich, H., Coleman, S. E., Melville, B. W. & Clunie, T. M. 2004 Development of discrete subaqueous bed forms. In 2nd International Conference on Fluvial Hydraulics – River Flow 2004, Naples, Italy.Google Scholar
Ha, H. K. & Chough, S. K. 2003 Intermittent turbulent events over sandy current ripples: a motion-picture analysis of flume experiments. Sedim. Geol. 161, 295308.CrossRefGoogle Scholar
Kauffeld, M., Kawaji, M. & Egolf, P. 2005 Handbook on Ice Slurries – Fundamentals and Engineering. International Institute of Refrigeration.Google Scholar
Kennedy, J. F. 1963 The mechanics of dunes and antidunes in erodible-bed channels. J. Fluid Mech. 16, 521544.Google Scholar
Kuru, W., Leighton, D. & McCready, M. 1995 Formation of waves on a horizontal erodible bed of particles. Intl J. Multiphase Flow 21 (6), 11231140.Google Scholar
Langlois, V. & Valance, A. 2007 Initiation and evolution of current ripples on a flat sand bed under turbulent water flow. Eur. Phys. J. E 22 (3), 201208.Google Scholar
Le Guer, Y., Reghem, P., Petit, I. & Stutz, B. 2003 Experimental study of a buoyant particle dispersion in pipe flow. IChemE 81 (A), 11361143.Google Scholar
Matousek, V. 2002 Pressure drops and flow patterns in sand-mixture pipes. Exp. Therm. Fluid Sci. 26 (6–7), 693702.CrossRefGoogle Scholar
Matousek, V. & Krupicka, J. 2013 Different types of unsteady flow of solids generated in laboratory slurry pipe loop. In 16th International Conference on Transport and Sedimentation of Solid Particles.Google Scholar
Ouriemi, M., Aussillous, P. & Guazzelli, E. 2009 Sediment dynamics. Part 2. Dune formation in pipe flow. J. Fluid Mech. 636, 321336.Google Scholar
Ouriemi, M., Aussillous, P., Medale, M., Peysson, Y. & Guazzelli, E. 2007 Determination of the critical Shields number for particle erosion in laminar flow. Phys. Fluids 19 (6), 061706.Google Scholar
Peysson, Y., Ouriemi, M., Medale, M., Aussillous, P. & Guazzelli, E. 2009 Threshold for sediment erosion in pipe flow. Intl J. Multiphase Flow 35 (6), 597600.CrossRefGoogle Scholar
Ramsdell, R. C. & Miedema, S. A. 2013 An overview of flow regimes describing slurry transport. In WODCON XX: The Art of Dredging, Brussels, Belgium, 3–7 June, pp. 1–16.Google Scholar
Raudkivi, A. J. 1997 Ripples on stream bed. J. Hydraul. Engng 123, 5864.Google Scholar
Rauen, W. B., Lin, B. & Falconer, R. A. 2008 Transition from wavelets to ripples in a laboratory flume with a diverging channel. Intl J. Sedim. Res. 23 (1), 112.Google Scholar
Soulsby, R. & Whitehouse, R. 1997 Threshold of sediment motion in coastal environment. In Proceedings of the Pacific Coasts and Ports’97 Conference, University of Canterbury, Christchurch, New Zealand, pp. 149–154.Google Scholar
Torrence, C. & Compo, G. P. 1998 A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79 (1), 6178.2.0.CO;2>CrossRefGoogle Scholar
Turian, R. & Yuan, T. 1977 Flow of slurries in pipelines. AIChE J. 23 (3), 232243.Google Scholar
Wierschem, A., Groh, C., Rehberg, I., Aksel, N. & Kruelle, C. 2008 Ripple formation in weakly turbulent flow. Eur. Phys. J. E 25 (2), 213221.Google Scholar
Yalin, M. 1977 The Mechanics of Sediment Transport, 2nd edn. Pergamon.Google Scholar
Yalin, M. 1985 On the determination of ripple geometry. J. Hydraul. Engng 111, 11481155.CrossRefGoogle Scholar