Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T11:37:45.161Z Has data issue: false hasContentIssue false

The hot hELicon eXperiment (HELIX) and the large experiment on instabilities and anisotropy (LEIA)

Published online by Cambridge University Press:  30 October 2014

E. E. Scime*
Affiliation:
Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA
P. A. Keiter
Affiliation:
Department of Atmospheric and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA
M. M. Balkey
Affiliation:
Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA
J. L. Kline
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
X. Sun
Affiliation:
Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
A. M. Keesee
Affiliation:
Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA
R. A. Hardin
Affiliation:
Wacker Polysilicon North America LLC, Charleston, TN 37310, USA
I. A. Biloiu
Affiliation:
US Army Research Laboratory, Adelphi, MD 20783, USA
S. Houshmandyar
Affiliation:
Department of Physics, Gonzaga University, Spokane, WA 99258, USA
S. Chakraborty Thakur
Affiliation:
Center for Energy Research, University of California, San Diego, CA 92093, USA
J. Carr Jr.
Affiliation:
Department of Physics, Texas Lutheran University, Seguin, TX 78155, USA
M. Galante
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI 53706, USA
D. McCarren
Affiliation:
Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA
S. Sears
Affiliation:
Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA
*
Email address for correspondence: escime@wvu.edu

Abstract

The West Virginia University Hot hELIcon eXperiment (HELIX) provides variable density and ion temperature plasmas, with controllable levels of thermal anisotropy, for space relevant laboratory experiments in the Large Experiment on Instabilities and Anisotropy (LEIA) as well as fundamental studies of helicon source physics in HELIX. Through auxiliary ion heating, the ion temperature anisotropy (T/T) is variable from 1 to 20 for parallel plasma beta (β = 8πnkTi/B2) values that span the range of 0.0001 to 0.01 in LEIA. The ion velocity distribution function is measured throughout the discharge volume in steady-state and pulsed plasmas with laser induced fluorescence (LIF). The wavelengths of very short wavelength electrostatic fluctuations are measured with a coherent microwave scattering system. Operating at low neutral pressures triggers spontaneous formation of a current-free electric double layer. Ion acceleration through the double layer is detected through LIF. LIF-based velocity space tomography of the accelerated beam provides a two-dimensional mapping of the bulk and beam ion distribution functions. The driving frequency for the m = 1 helical antenna is continuously variable from 8.5 to 16 MHz and frequency dependent variations of the RF coupling to the plasma allow the spontaneously appearing double layers to be turned on and off without modifying the plasma collisionality or magnetic field geometry. Single and multi-species plasmas are created with argon, helium, nitrogen, krypton, and xenon. The noble gas plasmas have steep neutral density gradients, with ionization levels reaching 100% in the core of the plasma source. The large plasma density in the source enables the study of Aflvén waves in the HELIX device.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, B. J. and Fuselier, S. A. 1993 J. Geophys. 98, 1461.CrossRefGoogle Scholar
Anderson, B. J., Fuselier, S. A., Gary, S. P. and Denton, R. E. 1994 J. Geophys. Res. 99, 5877.CrossRefGoogle Scholar
Bale, S. D., Kasper, J. C., Howes, G. G., Quataert, E., Salem, C. and Sundkvist, D. 2009 Phys. Rev. Lett. 103, 211 101.Google Scholar
Balkey, M., Boivin, R., Keiter, P. A., Kline, J. L. and Scime, E. 2001 Plasma Sources Sci. Technol. 10, 284.CrossRefGoogle Scholar
Biloiu, C., Harvey, Z., Scime, E. E. and Sun, X. 2006 Rev. Sci. Instrum. 77, 10F 117.CrossRefGoogle Scholar
Biloiu, C., Scime, E. E., Biloiu, I. A. and Sun, X. 2007a J. Appl. Phys. 102, 053 303.Google Scholar
Biloiu, C., Scime, E. E. and Sun, X. 2004 Rev. Sci. Instrum. 75, 4296.CrossRefGoogle Scholar
Biloiu, C., Sun, X., Harvey, Z. and Scime, E. E. 2007b J. Appl. Phys. 101, 073 303.CrossRefGoogle Scholar
Biloiu, I., Scime, E. and Biloiu, C. 2009 Plasma Sources Sci. Technol. 18, 025 012.CrossRefGoogle Scholar
Biloiu, I. A., Biloiu, C. and Scime, E. 2008 Appl. Phys. Lett. 92, 191 502.CrossRefGoogle Scholar
Biloiu, I. A. and Scime, E. E. 2009 Appl. Phys. Lett. 95, 051 504.CrossRefGoogle Scholar
Boivin, R. F., Kline, J. and Scime, E. 2001 Phys. Plasmas 8, 5303.CrossRefGoogle Scholar
Boswell, R. W. 1970 Phys. Lett. A 33, 457.CrossRefGoogle Scholar
Carr, J. Jr., Hansen, A. K., Chakraborty-Thakur, S., Reynolds, E., Sears, S. and Scime, E. 2013a Phys. Plasmas 20, 113 506.CrossRefGoogle Scholar
Carr, J. Jr. et al., 2013b Phys. Plasmas 20, 072 118.CrossRefGoogle Scholar
Chakraborty Thakur, S., Hansen, A. and Scime, E. E. 2010 Plasma Source Sci. Technol. 19, 025 008.CrossRefGoogle Scholar
Chakraborty Thakur, S., Harvey, Z., Biloiu, I. A., Hansen, A., Hardin, R. A., Przybysz, W. S. and Scime, E. E. 2009 Phys. Rev. Lett. 102, 035 004.CrossRefGoogle Scholar
Cohen, S., Sun, X. and Scime, E. E. 2006 IEEE Trans. Plasma Sci. 34, 792.Google Scholar
Cohen, S. A., Siefert, N. S., Stange, S., Scime, E. E., Boivin, R. F. and Levinton, F. 2003 Phys. Plasmas 10, 2593.CrossRefGoogle Scholar
Galante, M., Magee, R. M. and Scime, E. 2014 Phys. Plasmas.Google Scholar
Gary, S. P., Wang, J., Winske, D. and Fuselier, S. A. 1997 J. Geophys. Res. 102, 27 159.Google Scholar
Hansen, A. K., Galante, M., McCarren, D., Sears, S. and Scime, E. E. 2010 Rev. Sci. Instrum. 81, 10D 701.Google Scholar
Hardin, R. and Scime, E. 2008 Rev. Sci. Instrum. 79, 10E 725.Google Scholar
Hardin, R., Sun, X. and Scime, E. 2004 Rev. Sci. Instrum. 75, 4103.CrossRefGoogle Scholar
Harvey, Z., Chakraborty-Thakur, S., Hansen, A., Hardin, R. A., Przybysz, W. S. and Scime, E. E. 2008 Rev. Sci. Instrum. 79, 10F 314 CrossRefGoogle Scholar
Houshmandyar, S., Chakraborty Thakur, S., Carr, J. Jr., Galante, M. and Scime, E. 2010 Rev. Sci. Instrum. 81, 10D 704.Google Scholar
Houshmandyar, S., Hansen, A. and Scime, E. 2011 Phys. Plasmas 18, 112 111.Google Scholar
Houshmandyar, S. and Scime, E. 2012 Plasma Sources Sci. Technol. 21, 035 008.Google Scholar
Keesee, A. and Scime, E. 2006a Rev. Sci. Instrum. 77, 10F 304.CrossRefGoogle Scholar
Keesee, A., Scime, E. E., Charles, C., Meige, A. and Boswell, R. W. 2005 Phys. Plasmas 12, 093 502.Google Scholar
Keesee, A. M. and Scime, E. 2006b Rev. Sci. Instrum. 77, 10F 304.CrossRefGoogle Scholar
Keesee, A. M. and Scime, E. E. 2007 Plasma Sources Sci. Technol. 16, 742749.Google Scholar
Keiter, P. A., Scime, E. E. and Balkey, M. M. 1997 Phys. Plasmas 4, 2741.Google Scholar
Keiter, P. A., Scime, E. E., Balkey, M. M., Boivin, R., Kline, J. L. and Gary, S. P. 2000 Phys. Plasmas 7, 779.Google Scholar
Kline, J. L., Balkey, M., Boivin, R., Keesee, A. M., Keiter, P., Scime, E. and Sun, X. 2003 Phys. Plasmas 10, 2127.Google Scholar
Kline, J. L., Scime, E., Boivin, R., Keesee, A. M., Sun, X. and Mikhailenko, V. 2002a Phys. Rev. Lett. 88, 1950.CrossRefGoogle Scholar
Kline, J. L., Scime, E., Boivin, R., Keesee, A. M. and Sun, X. 2002b Plasma Sources Sci. Technol. 11, 413.Google Scholar
Kline, J. L., Scime, E. E., Keiter, P. A., Balkey, M. M. and Boivin, R. F. 1999 Phys. Plasmas 6, 4767.Google Scholar
Koslover, R. and McWilliams, R. 1986 Rev. Sci. Instrum. 57, 2441.Google Scholar
Magee, R. M., Galante, M. E., Carr, J. Jr., Lusk, G., McCarren, D. W. and Scime, E. E. 2013 Phys. Plasma 20, 123 511.CrossRefGoogle Scholar
Magee, R. M., Galante, M. E., Gulbrandsen, N. and Scime, E. E. 2012a Phys. Plasmas 19, 123 506.CrossRefGoogle Scholar
Magee, R. M., Galante, M. E., McCarren, D., Scime, E. E., Boivin, R. L., Brooks, N. H., Groebner, R. J., Hill, D. N. and Porter, G. D. 2012b Rev. Sci. Instrum. 83, 10D 701.CrossRefGoogle Scholar
Phan, T.-D., Paschmann, G., Baumjohann, W. and Sckopke, N. 1994 J. Geophys. Res. 95, 1015.Google Scholar
Scime, E., Boivin, R., Balkey, M. and Kline, J. 2001 Rev. Sci. Instrum. 72, 1672.Google Scholar
Scime, E., Carr, J. Jr., Galante, M. and Magee, R. M. 2013 Phys. Plasmas 20, 032 103.CrossRefGoogle Scholar
Scime, E., Hardin, R., Keesee, A. M., Biloiu, C. and Sun, X. 2007 Phys. Plasmas 14, 043 505.CrossRefGoogle Scholar
Scime, E., Keiter, P. A., Gary, S. P., Balkey, M. M., Boivin, R. F., Kline, J. L. and Blackburn, M. 2000 Phys. Plasmas 7, 2157.Google Scholar
Scime, E., Keiter, P. A., Zintl, M. W., Balkey, M. M., Kline, J. L. and Koepke, M. E. 1998 Plasma Sources Sci. Technol. 7, 186191.Google Scholar
Scime, E. E., Biloiu, I. A., Carr, J. Jr., Chakraborty Thakur, S. and Galante, M. 2010 Phys. Plasmas 17, 055 701.Google Scholar
Sheffield, J. 1975 Plasma Scattering of Electromagnetic Radiation, (New York: Academic).Google Scholar
Sun, X., Biloiu, C., Hardin, R. and Scime, E. 2004 Plasma Sources Sci. and Technol. 13, 359.Google Scholar
Sun, X., Biloiu, C., Keesee, A., Scime, E. E., Meige, A., Boswell, R. and Charles, C. 2005a Phys. Rev. Lett. 95, 025 004.CrossRefGoogle Scholar
Sun, X., Cohen, S. and Scime, E. E. 2005b Phys. Plasmas 12, 103 509.Google Scholar
Tan, L. C., Fung, S. F., Kessel, R. L., Chen, S. H., Green, J. L. and Eastman, T. E. 1998 Geophys. Res. Lett. 25, 587.Google Scholar
Vincena, S., Gekelman, W. and Maggs, J. 2001 Phys. Plasmas 8, 3884.CrossRefGoogle Scholar
Zintl, M. and McWilliams, R. 1994 Rev. Sci. Instrum. 65, 2574.Google Scholar