Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T05:21:05.070Z Has data issue: false hasContentIssue false

Organic electrochemical transistors as impedance biosensors

Published online by Cambridge University Press:  05 December 2014

Gregório C. Faria
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305; São Carlos Physics Institute, University of São Paulo, PO Box: 369, 13560-970 São Carlos, SP, Brazil
Duc T. Duong
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Alberto Salleo*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Christos A. Polyzoidis
Affiliation:
Department of Physics, Lab of “Thin Films- Nanosystems & Nanometrology (LFTN), Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Stergios Logothetidis
Affiliation:
Department of Physics, Lab of “Thin Films- Nanosystems & Nanometrology (LFTN), Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Jonathan Rivnay
Affiliation:
Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Roisin Owens
Affiliation:
Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
George G. Malliaras
Affiliation:
Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
*
Address all correspondence to Alberto Salleo at asalleo@stanford.edu
Get access

Abstract

Interfacing organic electrochemical transistors (OECTs) with biological systems holds considerable promise for building-sensitive biosensors and diagnostic tools. We present a simple model that describes the performance of biosensors in which an OECT is integrated with a biological barrier layer. Using experimentally derived parameters we explore the limits of sensitivity and find that it is dependent on the resistance of the barrier layer. This work provides guidelines on how to optimize biosensors in which OECTs transduce changes in the impedance of biological layers, including lipid bilayer membranes and confluent cell layers.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Berggren, M. and Richter-Dahlfors, A.: Organic bioelectronics. Adv. Mater. 19, 3201 (2007).Google Scholar
2.Rivnay, J., Owens, R.M., and Malliaras, G.G.: The rise of organic bioelectronics. Chem. Mater. 26, 679 (2014).Google Scholar
3.Khodagholy, D., Rivnay, J., Sessolo, M., Gurfinkel, M., Leleux, P., Jimison, L.H., Stavrinidou, E., Herve, T., Sanaur, S., Owens, R.M., and Malliaras, G.G.: High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013).Google Scholar
4.Kim, S.H., Hong, K., Xie, W., Lee, K.H., Zhang, S., Lodge, T.P., and Frisbie, C.D.: Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 25, 1822 (2013).Google Scholar
5.Nilsson, D., Chen, M., Kugler, T., Remonen, T., Armgarth, M., and Berggren, M.: Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14, 51 (2002).3.0.CO;2-#>CrossRefGoogle Scholar
6.Toss, H., Suspène, C., Piro, B., Yassar, A., Crispin, X., Kergoat, L., Pham, M.-C., and Berggren, M.: On the mode of operation in electrolyte-gated thin film transistors based on different substituted polythiophenes. Organ. Electron. 15, 2420 (2014).Google Scholar
7.Rivnay, J., Leleux, P., Sessolo, M., Khodagholy, D., Herve, T., Fiocchi, M., and Malliaras, G.G.: Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 7010 (2013).Google Scholar
8.Barnett, M.W. and Larkman, P.M.: The action potential. Pract. Neurol. 7, 192 (2007).Google Scholar
9.Gerich, J.E., Meyer, C., Woerle, H.J., and Stumvoll, M.: Renal gluconeogenesis. Diab. Care 24, 382 (2001).Google Scholar
10.Van Itallie, C.M. and Anderson, J.M.: Claudins and epithelial paracellular transport. Annu. Rev. Physiol. 68, 403 (2006).Google Scholar
11.Bernards, D.A., Malliaras, G.G., Toombes, G.E.S., and Gruner, S.M.: Gating of an organic transistor through a bilayer lipid membrane with ion channels. Appl. Phys. Lett. 89, 053505 (2006).Google Scholar
12.Jimison, L.H., Tria, S.A., Khodagholy, D., Gurfinkel, M., Lanzarini, E., Hama, A., Malliaras, G.G., and Owens, R.M.: Measurement of barrier tissue integrity with an organic electrochemical transistor. Adv. Mater. 24, 5919 (2012).Google Scholar
13.Tria, S.A., Ramuz, M., Huerta, M., Leleux, P., Rivnay, J., Jimison, L.H., Hama, A., Malliaras, G.G., and Owens, R.M.: Dynamic monitoring of Salmonella typhimurium infection of polarized epithelia using organic transistors. Adv. Healthcare Mater. 3, 1053 (2014).CrossRefGoogle ScholarPubMed
14.Tria, S.A., Jimison, L.H., Hama, A., Bongo, M., and Owens, R.M.: Validation of the organic electrochemical transistor for in vitro toxicology. Biochim. Biophys. Acta 1830, 4381 (2013).Google Scholar
15.Tria, S., Jimison, L.H., Hama, A., Bongo, M., and Owens, R.M.: Sensing of EGTA mediated barrier tissue disruption with an organic transistor. Biosensors 3, 44 (2013).Google Scholar
16.Kim, N., Kee, S., Lee, S.H., Lee, B.H., Kahng, Y.H., Jo, Y.-R., Kim, B.-J., and Lee, K.: Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26, 2268 (2014).Google ScholarPubMed
17.Ouyang, J., Xu, Q., Chu, C.-W., Yang, Y., Li, G., and Shinar, J.: On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45, 8443 (2004).Google Scholar
18.Steinem, C., Janshoff, A., Ulrich, W.-P., Sieber, M., and Galla, H.-J.: Impedance analysis of supported lipid bilayer membranes: a scrutiny of different preparation techniques. Biochim. Biophys. Acta 1279, 169 (1996).Google Scholar
19.Castellana, E.T. and Cremer, P.S.: Solid supported lipid bilayers: from biophysical studies to sensor design. Surface Sci. Rep. 61, 429 (2006).Google Scholar
20.Moore, E.R., Fischer, E.R., Mead, D.J., and Hackstadt, T.: The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic 9, 2130 (2008).Google Scholar
21.Montal, M. and Mueller, P.: Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U.S.A. 69, 3561 (1972).Google Scholar
22.Grasset, E., Pinto, M., Dussaulx, E., Zweibaum, A., and Desjeux, J.-F.: Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters. Am. Physiol. Soc. 247, 260 (1984).Google Scholar
23.Arthur, J.M.: The MDCK cell line is made up of populations of cells with diverse resistive and transport properties. Tissue Cell 32, 446 (2000).Google Scholar
Supplementary material: File

Faria Supplementary Material

Supplementary Material

Download Faria Supplementary Material(File)
File 851.5 KB