Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T21:00:38.843Z Has data issue: false hasContentIssue false

Why we can talk, debate, and change our minds: Neural circuits, basal ganglia operations, and transcriptional factors

Published online by Cambridge University Press:  17 December 2014

Philip Lieberman*
Affiliation:
Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI 02912. Philip.Lieberman@gmail.comwww.Brown.edu

Abstract

Ackermann et al. disregard attested knowledge concerning aphasia, Parkinson disease, cortical-to-striatal circuits, basal ganglia, laryngeal phonation, and other matters. Their dual-pathway model cannot account for “what is special about the human brain.” Their human cortical-to-laryngeal neural circuit does not exist. Basal ganglia operations, enhanced by mutations on FOXP2, confer human motor-control, linguistic, and cognitive capabilities.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blumstein, S. E. (1995) The neurobiology of language. In: Speech, language and communication, ed. Miller, J. & Eimas, P. D., pp. 339370. Academic Press.CrossRefGoogle Scholar
Blumstein, S. E., Cooper, W. E., Goodglass, H., Statlender, S. & Gottlieb, J. E. (1980) Production deficits in aphasia: A voice-onset time analysis. Brain and Language 9:153–70.Google Scholar
Chen, L.-M. & Kent, R. D. (2009) Development of prosodic patterns in Mandarin-learning infants. Journal of Child Language 36(1):7384.Google Scholar
Esteve-Gibert, N. & Prieto, P. (2013) Prosody signals the emergence of intentional communication in the first year of life: Evidence from Catalan-babbling infants. Journal of Child Language 40(5):919–44.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2010) The evolution of language. Cambridge University Press.CrossRefGoogle ScholarPubMed
Flowers, K. A. & Robertson, C. (1985) The effects of Parkinson's disease on the ability to maintain a mental set. Journal of Neurology, Neurosurgery, and Psychiatry 48(6):517–29.Google Scholar
Grossman, M., Carvell, S., Gollomp, S., Stern, M. B., Vernon, G. & Hurtig, H. I. (1991) Sentence comprehension and praxis deficits in Parkinson's disease. Neurology 41(10):1620–26.Google Scholar
Harrington, D. L. & Haaland, K. Y. (1991) Sequencing in Parkinson's disease: Abnormalities programming and controlling movement. Brain 114:99115.Google ScholarPubMed
Iwatsubo, T., Kuzuhara, S., Kanemitsu, A., Shimada, H. & Toyokura, Y. (1990) Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology 40(2):309–12.CrossRefGoogle Scholar
Jürgens, U. (2002b) Neural pathways underlying vocal control. Neuroscience and Biobehavioral Reviews 26:235–58.Google Scholar
Kuypers, H. G. J. M. (1958a) Corticobulbar connection to the pons and lower brain-stem in man. Brain 81:364–88.Google Scholar
Lange, K. W., Robbins, T. W., Marsden, C. D., James, M., Owen, A. & Paul, G. M. (1992) L-dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 107:394404.Google Scholar
Lehericy, S., Ducros, M., Van de Moortele, P-F., Francois, C. L., Thivard, L., Poupon, C., Swindale, N., Ugurbil, K. & Kim, D. S. (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Annals of Neurology 55(4):522–29.Google Scholar
Liberman, A. M., Cooper, F. S., Shankweiler, D. P. & Studdert-Kennedy, M. (1967) Perception of the speech code. Psychological Review 74:431–61.Google Scholar
Lieberman, P. (2000) Human language and our reptilian brain: The subcortical bases of speech, syntax, and thought. Harvard University Press.Google Scholar
Lieberman, P. (2002) On the nature and evolution of the neural bases of human language. Yearbook of Physical Anthropology 45:3662.Google Scholar
Lieberman, P. (2006b) Toward an evolutionary biology of language. Harvard University Press.Google Scholar
Lieberman, P. (2009) FOXP2 and human cognition. Cell 137:800802.Google Scholar
Lieberman, P. (2012) Vocal tract anatomy and the neural bases of talking. Journal of Phonetics 40:608–22.Google Scholar
Lieberman, P. (2013) The unpredictable species: What makes humans unique. Princeton University Press.Google Scholar
Lieberman, P., Friedman, J. & Feldman, L. S. (1990) Syntactic deficits in Parkinson's disease. Journal of Nervous and Mental Disease 178:360–65.Google Scholar
Lieberman, P., Kako, E. T., Friedman, J., Tajchman, G., Feldman, L. S. & Jiminez, E. B. (1992) Speech production, syntax comprehension, and cognitive deficits in Parkinson's disease. Brain and Language 43:169–89.Google Scholar
Lieberman, P., Kanki, B. G., Protopapas, A., Reed, E. & Youngs, J. W. (1994) Cognitive defects at altitude. Nature 372:325.Google Scholar
Lieberman, P., Morey, A., Hochstadt, J., Larson, M. & Mather, S. (2005) Mount Everest: A space-analog for speech monitoring of cognitive deficits and stress. Aviation, Space and Environmental Medicine 76:198207.Google Scholar
Maricic, T., Günther, V., Georgiev, O., Gehre, S., Curlin, M., Schreiweis, C., Naumann, R., Burbano, H. A., Meyer, M., Laluela-Fox, C., de la Rasilla, M., Rosas, A., Gajovic, S., Kelso, J., Enard, W., Schaffner, W. & Pääbo, S. (2013) A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Molecular Biology and Evolution 30(4):844–52. doi: 10.1093/molbev/mss271.Google Scholar
Marsden, C. D. & Obeso, J. A. (1994) The functions of the basal ganglia and the paradox of sterotaxic surgery in Parkinson's disease. Brain 117:877–97.Google Scholar
Monchi, O., Petrides, M., Petre, V., Worsley, K. & Dagher, A. (2001) Wisconsin card sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of Neuroscience 21(19):7733–41.Google Scholar
Naeser, M. A., Alexander, M. P., Helm-Estabrooks, N., Levine, H. L., Laughlin, S. A. & Geschwind, N. (1982) Aphasia with predominantly subcortical lesion sites: Description of three capsular/putaminal aphasia syndromes. Archives of Neurology 39(1):214.Google Scholar
Natsopoulos, D., Grouios, G., Bostantzopoulou, S., Mentenopoulos, G., Katsarou, Z. & Logothetis, J. (1993) Algorithmic and heuristic strategies in comprehension of complement clauses by patients with Parkinson's disease. Neuropsychologia 31(9):951–64.Google Scholar
Nauta, W. J. H. & Gygax, P. A. (1954) Silver impregnation of degenerating axons in the central nervous system: A modified technic. Stain Technology 29:9193.Google Scholar
Pickett, E. R., Kuniholm, E., Protopapas, A., Friedman, J. & Lieberman, P. (1998) Selective speech motor, syntax and cognitive deficits associated with bilateral damage to the putamen and the head of the caudate nucleus: A case study. Neuropsychologia 36:173–88.Google Scholar
Simard, F., Joanette, Y., Petrides, M. Jubault, T., Madjar, C. & Monchi, O. (2011) Fronto-striatal contributions to lexical set-shifting. Cerebral Cortex 21(5):1084–93.Google Scholar
Stuss, D. T., Benson, D. F. (1986) The frontal lobes. Raven.Google Scholar
Terao, S., Li, M., Hashizume, Y., Osano, Y, Mitsuma, T. & Sobue, G. (1997) Upper motor neuron lesions in stroke patients do not induce anterograde transneuronal degeneration in spinal anterior horn cells. Stroke 28(12):2553–56.Google Scholar
Tishkoff, S. A., Reed, F., Ranciaro, A., Voight, B. F., Babbitt, C. C., Silverman, J. S., Powell, K., Mortensen, H. M., Hirbo, J. B., Osman, M., Ibrahim, M., Omar, S. A., Lema, G., Nyambo, T. B., Ghori, J., Bumpstead, S., Pritchard, J. K., Wray, G. A. & Deloukas, P. (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics 39(1):3140.Google Scholar
Usui, C., Inoue, Y., Kimura, M., Kirino, E., Nagaoka, S., Abe, M., Nagata, T. & Arai, H. (2004) Irreversible subcortical dementia following high altitude illness. High Altitude Medicine and Biology 5(1):7781.CrossRefGoogle ScholarPubMed