Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T11:35:11.041Z Has data issue: false hasContentIssue false

X-ray diffraction study and powder patterns of double-perovskites Sr2RSbO6 (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu)

Published online by Cambridge University Press:  15 September 2014

W. Wong-Ng*
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
BCPS Chemistry Department, Illinois Institute of Technology, Chicago, Illinois 60616
M. Luong
Affiliation:
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
Q. Huang
Affiliation:
NCNR, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*
a)Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Abstract

The X-ray diffraction powder patterns were prepared and the crystal structures were refined for the double-perovskite series of compounds, Sr2RSbO6 (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu). We found the structures of the entire Sr2RSbO6 series to be monoclinic with space group P21/n (no. 14), and Z = 2. From R = Lu to Pr, the lattice parameters “a” range from 5.7779(2) to 5.879 05(8) Å, “b” range from 5.7888(2) to 5.969 52(9) Å, “c” range from 8.1767(3) to 8.369 20(12) Å, “β” range from 90.112(2)° to 90.313(1)°, and “V” range from 273.483(4) to 293.714(7) Å3. These lattice parameters follow the well-established trend of “lanthanide contraction”. The R3+ and Sb5+ ions are found to be fully ordered in the double-perovskite arrangement of alternating corner-sharing octahedra in a zigzag fashion. The SrO12, RO6, and SbO6 cages are all found to have distorted coordination environments. Powder diffraction patterns of these compounds have been prepared, submitted, and published in the Powder Diffraction File.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr. B 41, 244247.Google Scholar
Grebille, D., Lambert, S., Bourée, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr. 37, 823831.Google Scholar
Harada, D., Wakeshima, M., and Hinatsu, Y. (1999). “The structure and magnetic properties of new iridium(IV) perovskites Sr2LnIrO6 (Ln = Ce, Tb),” J. Solid State Chem. 145, 356360.Google Scholar
Hu, Y. F., Si, W. D., Sutter, E., and Li, Q. (2005). In situ growth of c-axis-oriented Ca3Co4O9 thin films on Si(100),” Appl. Phys. Lett. 86, 082103.Google Scholar
Kanaiwa, Y., Wakashima, M., and Hinatsu, Y. (2002). “Synthesis, crystal structure, and magnetic properties of ordered perovskites Sr2LnTaO6 (Ln = lanthanides),” Mater. Res. Bull. 37, 18251836.Google Scholar
Karpinski, J., Kazakov, S. M., Angst, M., Mironov, A., Mali, M., and Roos, J. (2001). Influence of Sr Substitution on the structure, charge distribution, and critical temperature of Y(Ba1−x Sr x )2Cu4O8 single crystals,” Phys. Rev. B 64, 094518.Google Scholar
Karunadasa, H., Huang, Q., Ueland, B. G., Schiffer, P., and Cava, R. J. (2003). “Ba2LnSbO6 and Sr2LnSbO6 (Ln=Dy, Ho, Gd) Double Perovskites: Lanthanides in the geometrically frustrating fcc lattice,” PNAS 100 (14), 80978102.Google Scholar
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR 86–748). Los Alamos, USA.Google Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., and Hejtmanck, J. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9 ,” Phys. Rev. B 62, 166175.Google Scholar
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds,” J. Solid State Chem. 178, 16701674.CrossRefGoogle Scholar
Mikami, M., Funashashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “High-temperature thermoelectric properties of single-crystal Ca3Co2O6 ,” J. Appl. Phys. 94, 65796582.CrossRefGoogle Scholar
Minami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−x Ba x )3Co4O9 thin films using combinatorial methods,” Appl. Surface Sci. 197, 442447.Google Scholar
Misture, S. and Edwards, D. (2012). “High temperature oxide thermoelectrics,” Amer. Ceram. Soc. Bull. 91, 2427.Google Scholar
Moon, J.-W., Masuda, Y., Seo, W.-S., and Koumoto, K. (2001). “Influence of ionic size of rare-earth site on the thermoelectric properties of RCoO3-type perovskite cobalt oxides,” Mater. Sci. Eng. B 85, 7075.CrossRefGoogle Scholar
Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).Google Scholar
PDF (2013). Powder Diffraction File, produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Square, PA. 19073–3273, USA.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Sehlin, S. R., Anderson, H. U., and Sparlin, D. M. (1995). “Semi empirical model for the electrical properties of La1−xCaxCoO3 ,” Phys. Rev. B 52(16), 1168111689.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides,” Acta Crystallogr. A 32, 751767.Google Scholar
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals,” Phys. Rev. B 56, 1268512687.Google Scholar
Wang, S., Venimadhav, A., Guo, S., Chen, K., Li, Q., Soukiassian, A., Schlom, D. G., Pan, X. Q., Wong-Ng, W., Vaudin, M. D., Cahill, D. G., and Xi, X. X. (2009). “Structural and thermoelectric properties of Bi2Sr2Co2Oy thin films on LaAlO3 (100) and fused silica substrates,” Appl. Phys. Lett. 94, 022110.CrossRefGoogle Scholar
Wang, Y., Sui, Y., Ren, P., Wang, L., Wang, X. J., Su, W. H., and Fan, H. J. (2010). “Correlation between the structural distortions and thermoelectric characteristics in La1−x A x CoO3 (A = Ca and Sr),” Inorg. Chem. 49, 32163223.Google Scholar
Wiebe, C. R., Greedan, J. E., Luke, G. M., and Gardner, J. S. (2002). “Spin-glass behavior in the S = 1/2 fcc ordered perovskite Sr2CaReO6 ,” Phys. Rev. B, Condens. Matter 65, 144413.Google Scholar
Wittmann, Von U., Rauser, G., and Kemmler-Sack, S. (1981). “Ȕber die Ordnung von BIII und MV in Perowskiten vom Typ A2 IIBIIIMVO6 (AII = Ba, SR; MV = Sb, Nb, Ta),” Z. Anorg. Allg. Chem. 482, 143153.CrossRefGoogle Scholar