Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-16T14:35:30.871Z Has data issue: false hasContentIssue false

Simultaneous Quantification of Indium and Nitrogen Concentration in InGaNAs Using HAADF-STEM

Published online by Cambridge University Press:  30 September 2014

Tim Grieb*
Affiliation:
Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
Knut Müller
Affiliation:
Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
Emmanuel Cadel
Affiliation:
Groupe de Physique des Matériaux (GPM) UMR 6634, Normandie Université, Université et INSA de RouenCNRS, Av. de l’Université, BP 12, 76801 Saint Etienne du Rouvray, France
Andreas Beyer
Affiliation:
Materials Science Center and Faculty of Physics, Philipps University Marburg, Hans Meerwein Straße, 35032 Marburg, Germany
Marco Schowalter
Affiliation:
Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
Etienne Talbot
Affiliation:
Groupe de Physique des Matériaux (GPM) UMR 6634, Normandie Université, Université et INSA de RouenCNRS, Av. de l’Université, BP 12, 76801 Saint Etienne du Rouvray, France
Kerstin Volz
Affiliation:
Materials Science Center and Faculty of Physics, Philipps University Marburg, Hans Meerwein Straße, 35032 Marburg, Germany
Andreas Rosenauer
Affiliation:
Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
*
*Corresponding author. grieb@ifp.uni-bremen.de
Get access

Abstract

To unambiguously evaluate the indium and nitrogen concentrations in InxGa1−xNyAs1−y, two independent sources of information must be obtained experimentally. Based on high-resolution scanning transmission electron microscopy (STEM) images taken with a high-angle annular dark-field (HAADF) detector the strain state of the InGaNAs quantum well is determined as well as its characteristic HAADF-scattering intensity. The strain state is evaluated by applying elasticity theory and the HAADF intensity is used for a comparison with multislice simulations. The combination of both allows for determination of the chemical composition where the results are in accordance with X-ray diffraction measurements, three-dimensional atom probe tomography, and further transmission electron microscopy analysis. The HAADF-STEM evaluation was used to investigate the influence of As-stabilized annealing on the InGaNAs/GaAs sample. Photoluminescence measurements show an annealing-induced blue shift of the emission wavelength. The chemical analysis precludes an elemental diffusion as origin of the energy shift—instead the results are in agreement with a model based on an annealing-induced redistribution of the atomic next-neighbor configuration.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, M., Grillo, V., Remmele, T., Strunk, H.P., Egorov, A.Y., Dumitras, G., Riechert, H., Kaschner, A., Heitz, R. & Hoffmann, A. (2002). Effect of annealing on the In and N distribution in InGaAsN quantum wells. Appl Phys Lett 81(15), 27192721.Google Scholar
Buyanova, I.A., Pozina, G., Hai, P.N., Thinh, N.Q., Bergman, J.P., Chen, W.M., Xin, H.P. & Tu, C.W. (2000). Mechanism for rapid thermal annealing improvements in undoped GaN x As1−x /GaAs structures grown by molecular beam epitaxy. Appl Phys Lett 77, 23252327.Google Scholar
Carlino, E. (2010). Quantitative Z-contrast atomic resolution studies of semiconductor nanostructured materials. J Phys Conf Ser 209, 012005.CrossRefGoogle Scholar
Forbes, B.D., Martin, A.V., Findlay, S.D., D’Alfonso, A.J. & Allen, L.J. (2010). Quantum mechanical model for phonon excitation in electron diffraction and imaging using a Born-Oppenheimer approximation. Phys Rev B 82, 104103.CrossRefGoogle Scholar
Friedman, D.J., Geisz, J.F., Kurtz, S.R. & Olson, J.M. (1998). 1-Ev solar cells with GaInNAs active layer. J Cryst Growth 195, 409415.Google Scholar
Glas, F. (2004). The effect of the static atomic displacements on the structure factors of weak reflections in cubic semiconductor alloys. Philos Mag 84(20), 20552074.CrossRefGoogle Scholar
Grieb, T., Müller, K., Fritz, R., Grillo, V., Schowalter, M., Volz, K. & Rosenauer, A. (2013). Quantitative chemical evaluation of dilute GaNAs using ADF STEM: Avoiding surface strain induced artifacts. Ultramicroscopy 129, 19.Google Scholar
Grieb, T., Müller, K., Fritz, R., Schowalter, M., Neugebohrn, N., Knaub, N., Volz, K. & Rosenauer, A. (2012). Determination of nitrogen concentration in dilute GaNAs by STEM HAADF Z-contrast imaging and STEM-HAADF strain state analysis. Ultramicroscopy 117, 1523.Google Scholar
Grillo, V. (2009). The effect of surface strain relaxation on HAADF imaging. Ultramicroscopy 109, 14531464.CrossRefGoogle ScholarPubMed
Grillo, V., Albrecht, M., Remmele, T., Strunk, H.P., Egorov, A.Y. & Riechert, H. (2001). Simultaneous experimental evaluation of In and N concentrations in InGaAsN quantum wells. J Appl Phys 90(8), 37923798.Google Scholar
Grillo, V., Carlino, E. & Glas, F. (2008). Influence of the static atomic displacement on atomic resolution Z-contrast imaging. Phys Rev B 77, 054103.Google Scholar
Grillo, V. & Rossi, F. (2011). A new insight on crystalline strain and defect features by STEM-ADF imaging. J Cryst Growth 318, 11511156.CrossRefGoogle Scholar
Keating, P.N. (1966). Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys Rev 145(2), 637645.Google Scholar
Kim, K. & Zunger, A. (2001). Spatial correlations in GaInAsN alloys and their effects on band-gap enhancement and electron localization. Phys Rev Lett 86, 26092612.Google Scholar
Kitatani, T., Nakahara, K., Kondow, M., Uomi, K. & Tanaka, T. (2000). Mechanism analysis of improved GaInNAs optical properties through thermal annealing. J Cryst Growth 209, 345349.CrossRefGoogle Scholar
Klar, P.J., Grüning, H., Koch, J., Schäfer, S., Volz, K., Stolz, W., Heimbrodt, W., Kamal Saadi, A.M., Lindsay, A. & O’Reilly, E.P. (2001). (Ga, In)(N, As)-fine structure of the band gap due to nearest-neighbor configurations of the isovalent nitrogen. Phys Rev B 64(12), 121203.Google Scholar
Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M.C., Nakahara, K., Yazawa, Y., Okai, M. & Uomi, K. (1997). GaInNAs: A novel material for long-wavelength semiconductor lasers. IEEE J Sel Topics Quantum Electron 3, 719730.Google Scholar
Kurtz, S., Webb, J., Gedvilas, L., Friedmann, D., Geisz, J., Olson, J., King, R., Joslin, D. & Karam, N. (2001). Structural changes during annealing of GaInAsN. Appl Phys Lett 78, 748750.Google Scholar
LeBeau, J. & Stemmer, S. (2008). Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108, 16531658.CrossRefGoogle ScholarPubMed
Litvinov, D., Gerthsen, D., Rosenauer, A., Hetterich, M., Grau, A., Gilet, P. & Grenouillet, L. (2004). Determination of the nitrogen distribution in InGaNAs/GaAs quantum wells by transmission electron microscopy. Appl Phys Lett 85, 37433745.Google Scholar
Mehrtens, T., Bley, S., Satyam, P.V. & Rosenauer, A. (2012). Optimization of the preparation of GaN-based specimens with low-energy ion milling for (S)TEM. Micron 43, 902909.Google Scholar
Molina, S.I., Sales, D.L., Galindo, P.L., Fuster, D., González, Y., Alén, B., González, L., Varela, M. & Pennycook, S.J. (2009). Column-by-column compositional mapping by Z-contrast imaging. Ultramicroscopy 109, 172176.CrossRefGoogle ScholarPubMed
Müller, K., Schowalter, M., Rosenauer, A., Hu, D., Schaadt, D.M., Hetterich, M., Gilet, P., Rubel, O., Fritz, R. & Volz, K. (2011). Atomic scale annealing effects of In x Ga1−x N y As1−y studied by TEM three-beam imaging. Phys Rev B 84, 045316.Google Scholar
Müller, K., Schowalter, M., Rosenauer, A., Rubel, O. & Volz, K. (2010). Effect of bonding and static atomic displacements on composition quantification in In x Ga1−x N y As1−y . Phys Rev B 81(7), 075315.Google Scholar
Nellist, P. & Rodenburg, J. (1994). Beyond the conventional information limit: The relevant coherence function. Ultramicroscopy 54, 6174.Google Scholar
Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117, 119.CrossRefGoogle Scholar
Riechert, H., Ramakrishnan, A. & Steinle, G. (2002). Development of InGaAsN-based 1.3 μm VCSELs. Semicond Sci Technol 17, 892897.CrossRefGoogle Scholar
Riley, J., Bernal, R., Li, Q., Espinosa, H., Wang, G. & Lauhon, L. (2012). Atom probe tomography of a-axis GaN nanowires: Analysis of nonstoichiometric evaporation behavior. ACS Nano 6, 38983906.Google Scholar
Rosenauer, A., Fischer, U., Gerthsen, D. & Förster, A. (1998). Composition evaluation by lattice fringe analysis. Ultramicroscopy 72, 121133.Google Scholar
Rosenauer, A., Gries, K., Müller, K., Pretorius, A., Schowalter, M., Avramescu, A., Engl, K. & Lutgen, S. (2009). Measurement of specimen thickness and composition in Al x Ga1−x N/GaN using high-angle annular dark field images. Ultramicroscopy 109, 11711182.Google Scholar
Rosenauer, A., Mehrtens, T., Müller, K., Gries, K., Schowalter, M., Satyam, P.V., Bley, S., Tessarek, C., Hommel, D., Sebald, K., Seyfried, M., Gutowski, J., Avramescu, A., Engl, K. & Lutgen, S. (2011). Composition mapping in InGaN by scanning transmission electron microscopy. Ultramicroscopy 111, 13161327.CrossRefGoogle ScholarPubMed
Rosenauer, A. & Schowalter, M. (2007). STEMSIM – A new software tool for simulation of STEM HAADF Z-contrast imaging. Springer Proc Phys 120, 169172.Google Scholar
Rosenauer, A., Schowalter, M., Glas, F. & Lamoen, D. (2005). First-principles calculations of 002 structure factors for electron scattering in strained In x Ga1−x As. Phys Rev B 72, 085326.Google Scholar
Saxey, D. (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473479.Google Scholar
Schowalter, M., Müller, K. & Rosenauer, A. (2012). Scattering amplitudes and static atomic correction factors for the composition-sensitive 002 reflection in sphalerite ternary iii-v and ii-vi semiconductors. Acta Cryst A 68, 6876.Google Scholar
Schowalter, M., Rosenauer, A., Titantah, J.T. & Lamoen, D. (2009). Computation and parametrization of the temperature dependence of Debye-Waller factors for group iv, iii-v and ii-vi semiconductors. Acta Cryst A 65, 517.Google Scholar
Scott, J., Docherty, F.T., MacKenzie, M., Smith, W., Miller, B., Collins, C.L. & Craven, A.J. (2006). Sample preparation for nanoanalytical electron microscopy using the FIB lift-out method and low energy ion milling. J Phys Conf Ser 26, 223226.Google Scholar
Spruytte, S.G., Larson, M.C., Wampler, W., Coldren, C.W., Petersen, H.E. & Harris, J.S. (2001). Nitrogen incorporation in group iii-nitride-arsenide materials grown by elemental source molecular beam epitaxy. J Cryst Growth 227–228, 506515.CrossRefGoogle Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Van Dyck, D. (2009). Is the frozen phonon model adequate to describe inelastic phonon scattering? Ultramicroscopy 109, 677682.Google Scholar
Volz, K., Torunski, T., Kunert, B., Rubel, O., Nau, S., Reinhard, S. & Stolz, W. (2004). Specific structural and compositional properties of (GaIn)(NAs) and their influence on optoelectronic device performance. J Cryst Growth 272, 739747.CrossRefGoogle Scholar
Volz, K., Torunski, T., Rubel, O. & Stolz, W. (2008). Direct structural evidence of the change in n-iii bonding in (GaIn)(NAs) before and after thermal annealing. J Appl Phys 104, 053504.Google Scholar
Vurgaftman, I., Meyer, J.R. & Ram-Mohan, L.R. (2001). Band parameters for iii-v compound semiconductors and their alloys. J Appl Phys 89(11), 58155875.Google Scholar
Wagner, J., Geppert, T., Küohler, K., Ganser, P. & Maier, M. (2003). Bonding of nitrogen in dilute GaInAsN and AlGaAsN studied by Raman spectroscopy. Solid State Electron 47, 461465.Google Scholar
Wang, Z. (1998). The “frozen-lattice” approach for incoherent phonon excitation in electron scattering. How accurate is it? Acta Cryst A 54, 460467.Google Scholar
Wang, Z. (2003). Thermal diffuse scattering in sub-angstrom quantitative electron microscopy – Phenomenon, effects and approaches. Micron 34, 141155.Google Scholar
Weickenmeier, A. & Kohl, H. (1991). Computation of absorptive form factors for high-energy electron diffraction. Acta Cryst A 47(5), 590597.Google Scholar