Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T10:52:57.480Z Has data issue: false hasContentIssue false

NUTRIENT BALANCES AND ECONOMIC PERFORMANCE IN URBAN AND PERI-URBAN VEGETABLE PRODUCTION SYSTEMS OF THREE WEST AFRICAN CITIES

Published online by Cambridge University Press:  22 August 2014

AISHA ABDULKADIR*
Affiliation:
Department of Soil Science, Faculty of Agriculture, Ahmadu Bello University, P.M.B 1044, Zaria, Nigeria
SHEICK K. SANGARÉ
Affiliation:
Department of Natural Resource Management, Institute for Environment and Agricultural Research, INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
HAMADOUN AMADOU
Affiliation:
Centre Regional de Récherch, Agronomique de Sikasso Institute d’Economie Rurale, Sikasso, Mali
JOHN O. AGBENIN
Affiliation:
Department of Soil Science, Faculty of Agriculture, Ahmadu Bello University, P.M.B 1044, Zaria, Nigeria
*
Corresponding author. Email: aiabdulkadir@abu.edu-ng

Summary

Urban and peri-urban (UPA) cultivation supplies fresh vegetables and employment for the increasing number of urban inhabitants. It is characterized by the use of large nutrient inputs to increase productivity and often associated with negative environmental risks. For these reasons, this study quantified nutrient (nitrogen, N; phosphorus, P; and potassium, K) flows and economic performance of UPA gardening of the three West African cities of Kano, Nigeria; Bobo Dioulasso, Burkina Faso; Sikasso, Mali, during a 2-year period using the Monitoring for Quality Improvement (MonQI) toolbox considering inflows and outflows sources. Average annual N, P and K balances were positive for all gardens in the three cities with N balances of 279, 1127 and 74 kg N ha−1 in Kano, Bobo Dioulasso and Sikasso, respectively, except for annual K deficits of 222 and 187 kg K ha−1 in Kano and Sikasso, respectively. Nitrogen use efficiencies were 63%, 51% and 87% in Kano, Bobo Dioulasso and Sikasso, respectively, with poor P use efficiencies due to excess application in all three cities. However, a high K efficiency was observed in Bobo Dioulasso (87%) while applications of K were lower than required in Kano and Sikasso with efficiencies of 121% and 110%, indicating possible K mining. The average annual gross margins from gardening indicated a statistically higher (p < 0.05) return of US$3.83 m−2 in Bobo Dioulasso than returns obtained in Kano (US$0.92 m−2) and Sikasso (US$1.37 m−2). Although an economically vibrant activity, intensive UPA vegetable production needs to be reviewed for strategic planning towards improving N and P use efficiencies in order to maintain its productivity as well as safeguard the environment. Appropriate K fertilization is necessary to avoid long term K depletion in Kano and Sikasso UPA gardening.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalla, S. B., Predotova, M., Gebauer, J. and Buerkert, A. (2012). Horizontal nutrient flows and balances in irrigated urban gardens of Khartoum, Sudan. Nutrient Cycling in Agroecosystems 92:119132.CrossRefGoogle Scholar
Abdel-Rahman, G., Seidhom, S. H., Talaat, A. M. and Leopold, S. (2008). Water requirements of some crops in Bobo-Dioulasso, western region of Burkina Faso. International Journal of Applied Science Research 4:16581666.Google Scholar
Abdu, N., Abdulkadir, A., Agbenin, J. and Buerkert, A. (2011). Vertical distribution of heavy metals in wastewater-irrigated vegetable garden soils of three West African cities. Nutrient Cycling in Agroecosystems 89:387397.CrossRefGoogle Scholar
Abdu, N., Agbenin, J. O. and Buerkert, A. (2010). Phyto availability, human risk assessment and transfer characteristics of cadmium and zinc contamination from urban gardens in Kano, Nigeria. Journal of Science of Food and Agriculture 91:27222730.CrossRefGoogle Scholar
Abdulkadir, A., Dossa, L. H., Lompo, D. J. P., Abdu, N. and Van Keulen, H. (2012). Characterization of urban and peri-urban agroecosystems in three West African cities. International Journal of Agricultural Sustainability 10 (4):289314.Google Scholar
Abdulkadir, A., Leffelaar, P. A., Agbenin, J. O. and Giller, K. E. (2013). Nutrient flows and balances in urban and peri-urban agroecosystems of Kano, Nigeria. Nutrient Cycling in Agroecosystems 95 (2):231254.CrossRefGoogle Scholar
Barry, B. (2002). Development of urban and peri-urban agriculture in West Africa. In Private irrigation in sub-Saharan Africa. Proceedings of Regional Seminar on Private Sector Participation and Irrigation Expansion in Sub-Saharan Africa, 22–26 October 2001, Accra, Ghana (Eds Sally, H. and Abernethy, C.). Colombo, Sri Lanka: International Water Management Institute, Food and Agriculture Organization and Technical Centre for Agricultural and Rural Cooperation (CTA).Google Scholar
Binns, J. A., Maconachie, R. A. and Tanko, A. I. (2003). Water, land and health in urban and peri-urban food production: the case of Kano, Nigeria. Land Degradation and Development 14:431444.CrossRefGoogle Scholar
Blake, B. R. and Hartge, K. H. (1986). Particle density. In Method of Soil Analysis, PartI, 2nd edn., 363375 (Ed Klute, A.), Agronomy Monogram 9. Madison, WI: ASA and SSSA Google Scholar
Brouwer, J. and Powell, J. M. (1998). Increasing nutrient use efficiency in West-Africa agriculture: the impact of micro topography on nutrient leaching from cattle and sheep manures. Agriculture Ecosystems and Environment 71:229238.CrossRefGoogle Scholar
Chaney, A. L. and Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical Chemistry 8:130132.CrossRefGoogle ScholarPubMed
Cissé, I. A. and Mao, X. (2008). Nitrate: health effect in drinking water and management for water quality. Environronmental Research Journal 2 (6):311316.Google Scholar
Cofie, O. O., Veenhuizen, R. V. and Drechsel, P. (2003). Contribution of urban and peri-urban agriculture to food security in sub-Saharan Africa, Africa session of 3rd WWF, 17 March, 2003, Kyoto.Google Scholar
Danso, G., Drechsel, P., Wiafe-Antwi, T. and Gyiele, L. (2002). Income of farming systems around Kumasi, Ghana. Urban Agriculture Magazine 7:56.Google Scholar
De Bon, H., Parrot, L. and Moustier, P. (2010). Sustainable urban agriculture in developing countries. A review. Agronomy for Sustainable Development 30:2132.CrossRefGoogle Scholar
De Jager, A. (2007). Practice makes perfect: participatory innovation in soil fertility management to improve rural livelihoods in East Africa. PhD thesis, Wageningen University, Wageningen, The Netherlands, 218 pp.Google Scholar
Diogo, R. V. C., Buerkert, A. and Schlecht, E. (2011). Economic benefit to gardeners and retailers from cultivating and marketing vegetables in Niamey, Niger. Outlook on Agriculture 40 (1):7178.CrossRefGoogle Scholar
Diogo, R. V. C., Buerkert, A. and Schlecht, E. (2010). Horizontal nutrient fluxes and food safety in urban and peri-urban vegetable and millet cultivation of Niamey, Niger. Nutrient Cycling in Agroecosystems 87:81102.CrossRefGoogle Scholar
Dobermann, A. (2007). Nutrient use efficiency - measurement and management. Paper presented at IFA International Workshop on Fertilizer Best Management Practices, 7–9 March, 2007, Brussels, Belgium.Google Scholar
Dossa, L. H., Abdulkadir, A., Amadou, H., Sangare, C. and Schlecht, E. (2011). Exploring the diversity of urban and peri-urban agricultural systems in West Africa: an attempt towards a regional typology. Landscape and Urban Planning 102:197206.CrossRefGoogle Scholar
Douxchamps, S., Humbert, F. L., Van der Hoek, R., Mena, M., Bernasconi, S., Schmidt, A., Rao, I. M., Frossard, E. and Oberson, A. (2010). Nitrogen balances in farmers fields under alternative uses of a cover crop legume – a case study from Nicaragua. Nutrient Cycling in Agroecosystems 88:447462.CrossRefGoogle Scholar
Drechsel, P. and Dongus, S. (2010). Dynamics and sustainability of urban agriculture: examples from sub-Saharan Africa. Sustainable Science 5:6978.CrossRefGoogle Scholar
Drechsel, P., Giordano, M. and Enters, T. (2004). Valuing nutrients in soil and water: concepts and techniques with examples from IWMI studies in the developing world. Research Report 82. Colombo, Sri Lanka: International Water Management Institute (IWMI).Google Scholar
Drechsel, P., Graefe, S., Sonou, M. and Cofie, O. O. (2006). Informal irrigation in urban West Africa: an overview. Research Report 102. Colombo, Sri Lanka: International Water Management Institute (IWMI). Available at: http://www.iwmi.cgiar.org/Publications/IWMI_Research_Reports/PDF/pub102/RR102.pdf. Accessed January 2010.Google Scholar
Drechsel, P., Keraita, B., Amoah, P., Abaidoo, R. C., Raschid-Sally, L. and Bahri, A. (2008). Reducing health risks from wastewater use in urban and peri-urban sub-Saharan Africa: applying the 2006 WHO guidelines. Water Science Technology 57:14611466.CrossRefGoogle Scholar
Drees, L. R., Manu, A. and Wilding, L. P. (1993). Characteristics of aeolian dust in Niger, West Africa. Geoderma 59:213233.CrossRefGoogle Scholar
Ensink, J. H. J., Van der Hoek, W., Matsuno, Y., Munir, S. and Aslam, M. R. (2002). Use of untreated wastewater in peri-urban agriculture in Pakistan: risk and opportunities. Research Report 64. Colombo: International Water Management Institute (IWMI).Google Scholar
Færge, J., Magid, J. and Penning De Vries, F. W. T. (2001). Urban nutrient balance for Bangkok. Ecological Modelling 139:6374.CrossRefGoogle Scholar
FAO (2005). Bilan des éléments nutritifs du sol á différentes échelles. Application des methodes intermédiaires aux réalités Africaines. Organisation des nations Unies pour l’Alimentation et l’Agriculture. Bulletin FAO Engrais et Nutrition Végétale 15. Rome, Italy.Google Scholar
Fox, R. L. and Valenzuela, H. (2011). Vegetables grown under tropical and subtropical conditions. World Fertilizer Use Manual by types of crop. Available at: http://pablochan.org/diary/2010/08/10/world-fertilizer-use-manual-by-type-of-crops/. Accessed March 2011.Google Scholar
Gee, G. W. and Bauder, J. W. (1986). Particle-size analysis. In Methods of Soil Analysis, Part I, 2nd edn., 383411 (Ed Klute, A.), Agronomy Monogram 9. Madison, WI: ASA and SSSA.Google Scholar
Goulding, K. W. T. (2006). Nitrate leaching from arable and horticultural land. Soil Use Management 16:145151.CrossRefGoogle Scholar
Gyiele, L. (2002). Integrated economic and environmental impact assessment of urban and peri-urban agriculture in and around Kumasi. Vols. 1 and 2 of the Final Report submitted to FAO (Project PR 17951). Kumasi, Ghana: IWMI-IBSRAM and KNUST.Google Scholar
He, F., Chen, Q., Jiang, R., Chen, X. and Zhang, F. (2007). Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum; Mill.) with conventional and site-specific nitrogen management in Northern China. Nutrient Cycling in Agroecosystems 77:114.CrossRefGoogle Scholar
Huang, S. W., Jin, J. Y., Bai, Y. L. and Yang, L. P. (2007). Evaluation of nutrient balance in soil-vegetable system using nutrient permissible surplus or deficit rate. Communications in Soil Science and Plant Analysis 38:959974.CrossRefGoogle Scholar
Janssen, B. H. and Willigen, P. D. (2006). Ideal and saturated soil fertility as bench marks in nutrient management: 1. Outline of the framework. Agriculture Ecosystems and Environment 116:132146.CrossRefGoogle Scholar
Karam, F., Mounzer, O., Sarkis, F. and Lahoud, R. (2002). Yield and nitrogen recovery of lettuce under different irrigation regimes. Journal of Applied Horticulture 4 (2):7076.CrossRefGoogle Scholar
Keraita, B., Drechsel, P., Huibers, F. and Raschid-Sally, L. (2002). Wastewater use in informal irrigation in urban and peri-urban areas of Kumasi, Ghana. Urban Agriculture Magazine 9:1112.Google Scholar
Khai, N. M., Ha, P. Q. and Öborn, I. (2007). Nutrient flows in small-scale peri-urban vegetable farming systems in Southeast Asia: a case study in Hanoi. Agriculture Ecosystems and Environment 122:192202.CrossRefGoogle Scholar
Kremen, C. and Miles, A. (2012). Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecological Society 17 (14):40. Available at: http://dx.doi.org/10.5751/ES-05035-170440. Accessed July 2013.Google Scholar
La Malfa, G. (2011). Vegetables grown under temperate conditions. World Fertilizer Use Manual by type of crop. Available at: http://pablochan.org/diary/2010/08/10/world-fertilizer-use-manual-by-type-of-crops/. Accessed March 2011.Google Scholar
Lesschen, J., Stoorvogel, J., Smaling, E., Heuvelink, G. and Veldkamp, A. (2007). A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level. Nutrient Cycling in Agroecosystems 78:111131.CrossRefGoogle Scholar
Lowry, O. H. and Lopez, J. A. (1946). The determination of inorganic phosphate in the presence of labile phosphate esters. Biology Chemistry 162:421428.CrossRefGoogle ScholarPubMed
Lynch, K., Binns, T. and Olofin, E. (2001). Urban agriculture under threat: the land security question in Kano, Nigeria. Cities 18:159171.CrossRefGoogle Scholar
Mashi, S. A. and Alhassan, M. M. (2007). Effect of wastewater discharge on heavy metals pollution in Fadama soils in Kano city, Nigeria. Biomedical Environmental Science 20:7077.Google ScholarPubMed
Mishima, S., Endo, A. and Kohyama, K. (2010). Recent trends in phosphate balance nationally and by region in Japan. Nutrient Cycling in Agroecosystems 86:6977.CrossRefGoogle Scholar
MonQI (2007). Monitoring for Quality Improvement – MONQI toolbox and manual version 7.Google Scholar
Muya, E. M., Gitau, K., Obanyi, S., Ngutu, M., Kuria, S., Sharfi, H., Dub, D. G., Bulle, H., Miano, D. M., Muriethi, J., Keya, G., Sijali, I. V., Mamo, S., Maingi, P. M., Okoti, M., Omedi, M. J. and Elisaba, A. (2011). Characterizing sites for the design and restoration of Kalacha irrigation scheme, Chalbi district, Kenya: socio-economic and biophysical considerations. Journal of Soil Science and Environmental Management 1:99106.Google Scholar
Nelson, D. W. and Sommers, L. M. (1986). Total carbon, organic carbon and organic matter. In Method of Soil Analysis, Part 2, Chemical Methods. 9611010 (Ed Sparks, D. L.). Madison, WI: ASA.Google Scholar
Öborn, I., Edwards, A. C., Witter, E., Oenema, O., Ivarsson, K., Withers, P. J. A., Nilsson, S. I. and Richert Stinzing, A. (2003). Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. European Journal of Agronomy 20:211225.CrossRefGoogle Scholar
Oenema, O., Kros, H. and de Vries, W. (2003). Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. European Journal of Agronomy 20:316.CrossRefGoogle Scholar
Pathak, H., Mohanty, S., Jain, N. and Bhatia, A. (2010). Nitrogen, phosphorus, and potassium budgets in Indian agriculture. European Journal of Agronomy 86:287299.Google Scholar
PPIC (2003). Symptoms of potassium deficiency in vegetable crops, Fertilizer Knowledge No. 3. Gurgaon, India: Potash and Phosphate Institute of Canada-India Programme.Google Scholar
Ramakrishna, A., Win, S. S., Rego, T. J., Wani, S. P. and Hla, T. (2004). On-farm nutrient balance studies in the dry zone of Myanmar. International Journal of Agricultural Sustainability 2:98108.CrossRefGoogle Scholar
Roy, R. N., Misra, R. V., Lesschen, J. P. and Smaling, E. M. A. (2003). Assessment of soil nutrient balances approaches and methodologies. Food and Agriculture Organization (FAO) Fertilizer and Plant Nutrition Bulletin 14. Rome, Italy: FAO. Available at: http://www.fao.org/docrep/006/y5066e/y5066e00.htm.Google Scholar
Safi, Z., Predotova, M., Schlecht, E. and Buerkert, A. (2011). Horizontal matter fluxes and leaching losses in urban and peri-urban agriculture of Kabul, Afghanistan. Journal of Plant Nutrition and Soil Science 176:942951.CrossRefGoogle Scholar
SAS (2003). SAS/STAT for Personal Computers. Cary, NC: SAS Institute Inc. Google Scholar
Smaling, E. M. A. and Braun, A. R. (1996). Soil fertility research in sub-Saharan Africa: new dimensions, new challenges. Communication in Soil Science and Plant Analysis 27:365386.CrossRefGoogle Scholar
Smith, O. B. (2001). Overview of urban agriculture and food security in West Africa. Ottawa, Canada: International Development Research Centre.Google Scholar
Song, C., Wang, E., Han, X. and Stirzaker, R. (2011). Crop production, soil carbon and nutrient balances as affected by fertilisation in a Mollisol agroecosystem. European Journal of Agronomy 89:363374.Google Scholar
Stoorvogel, J. J. and Smaling, E. M. A. (1990). Assessment of soil nutrient depletion in sub-Saharan Africa: 1983–2000. Vol. I, Main Report. Report No. 28. Wageningen, Netherlands: Winard Staring Centre.Google Scholar
Terbe, I., Slezák, K., Kappel, N. and Orosz, F. (2010). Yield and quality of vegetables in relation to potassium supply. 1–7 pp. Available at: http://www.ipipotash.org/udocs/Yield_and_quality_of_vegetables_in_relation_to_potassium_supply.pdf. Accessed December 2010.Google Scholar
USDA (2008). Soil quality assessment: soil quality indicator information sheets. Natural Resources conservation Services. Available at: http://soils.usda.gov/sqi/assessment/assessment.html#indicator_sheets. Accessed March 2011.Google Scholar
Validivia, R. O., Antle, J. M. and Stoorvogel, J. J. (2012). Coupling the trade-off analysis model with a market equilibrium model to analyse economic and environmental outcomes of agricultural systems. Agricultural Systems 110:1729.CrossRefGoogle Scholar
Van Beek, C. L., Onduro, D. D., Gachimbi, L. N. and De Jager, A. (2009). Farm nitrogen flows of four farmer field schools in Kenya. European Journal of Agronomy 83:6372.Google Scholar
Van Den Bosch, H., Gitari, J. N., Ogaro, V. N., Maobe, S. and Vlaming, J., 1998. Monitoring nutrient flows and economic performance in African farming systems (NUTMON). III. Monitoring nutrient flows and balances in three districts in Kenya. Agriculture, Ecosystems & Environment. 71: 6380.CrossRefGoogle Scholar
Van der Hoek, W., Ul Hassan, M., Ensink, J. H. J., Feenstra, S., Raschid-Sally, L., Munir, S., Aslam, R., Ali, N., Hussain, R. and Matsuno, Y. (2002). Urban wastewater: a valuable resource for agriculture. A case study from Haroonabad, Pakistan. Research Report 63. Colombo: International Water Management Institute (IWMI).Google Scholar
Van Reeuwijk, L. P. (1993). Procedure for soil analysis. Technical paper no. 9, 4th International Soil Reference and Information Centre (ISRIC), The Netherlands.Google Scholar
Vlaming, J., van den Bosch, H., van Wijk, M. S., de Jager, A., Bannink, A. and van Keulen, H. (2001). Monitoring nutrient flows and economic performance in tropical farming system (NUTMON). Part 1: Manual for the NUTMON-Toolbox. Hague, The Netherlands: Agricultural Economics Research Institute.Google Scholar
Wang, H. J., Huang, B., Shi, X. Z., Darilek, J. L., Yu, D. S., Sun, W. X., Zhao, Y. C., Chang, Q. and Öborn, I. (2008). Major nutrient balances in small-scale vegetable farming systems in peri-urban areas in China. Nutrient Cycling in Agroecosystems 81:203218.CrossRefGoogle Scholar
Yusuf, A. A., Iwuafor, E. N. O., Abaidoo, R. C., Olufajo, O. O. and Sanginga, N. (2009). Grain legume rotation benefits to maize in the northern Guinea savanna of Nigeria: fixed-nitrogen versus other rotation effects. Nutrient Cycling in Agroecosystems 84:129139.CrossRefGoogle Scholar
Zhao, C., Hu, C., Huang, W., Sun, X., Tan, Q. and Di, H. (2010). A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetables production systems in China. Journal of Soil Sediments 10:917.CrossRefGoogle Scholar