Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T21:21:04.326Z Has data issue: false hasContentIssue false

Aristophanes and stable isotopes: a taste for freshwater fish in Classical Thebes (Greece)?

Published online by Cambridge University Press:  02 January 2015

E. Vika*
Affiliation:
Division of Archaeological, Geographical and Environmental Sciences, University of Bradford, Bradford BD7 1DP, UK
V. Aravantinos
Affiliation:
IX Ephorate of Prehistoric and Classical Antiquities, Thebes 322 00, Greece
M.P. Richards
Affiliation:
Department of Archaeology, Durham University, South Road, Durham DH1 3LE, UK Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany

Abstract

Stable isotopes in skeletons indicate changes in diet, and a sample of humans from Classical Thebes showed an unexpected increase in nitrogen values – usually associated with increased access to protein. But from what and how? After considering the possible sources of meat, milk and manure, the authors highlight the contribution of freshwater fish, and find support in Aristophanes – where the citizens are heard clamouring for the eels of Lake Kopais.

Type
Research
Copyright
Copyright © Antiquity Publications Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, S. E., Cherry, J. F. & Davis, J. L.. 1994. Intensive survey, agricultural practice and the classical landscape of Greece, in Morris, I. (ed.) Classical Greece: ancient histories and modern ideologies: 137–70. Cambridge: Cambridge University Press.Google Scholar
Ambrose, S. H. 2000. Controlled diet and climate experiments on nitrogen isotope ratios of rats, in Ambrose, S. H. & Katzenberg, A. M. (ed.) Biogeochemical approaches to paleodietary analysis: 243–59. New York: Kluwer Academic/Plenum.Google Scholar
Ambrose, S. H., Butler, B. M., Hanson, D. B., Hunter-Anderson, R. L. & Krueger, H. W.. 1997. Stable isotopic analysis of human diet in the Marianas Archipelago, western Pacific. American Journal of Physical Anthropology 104: 343–61.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Baticle, Y. 1974. L'élevage ovin dans les pays Européens de la Méditerranée Occidentale. Paris: Les Belles Lettres.Google Scholar
Bintliff, J. & Snodgrass, A.. 1985. The Cambridge/Bradford Boeotian expedition: the first four years. Journal of Field Archaeology 12: 123–61.Google Scholar
Bintliff, J. & Snodgrass, A.. 1988. Off-site pottery distributions: a regional and interregional perspective. Current Anthropology 29: 506–13.CrossRefGoogle Scholar
Bocherens, H. & Drucker, D.. 2003. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology 13: 4653.CrossRefGoogle Scholar
Bogaard, A., Heaton, T.H.E., Poulton, P. & Merbach, I.. 2007. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science 34: 335–43.CrossRefGoogle Scholar
Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R.. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30: 171–7.CrossRefGoogle Scholar
Bryer, A. & Lowry, H.. 1986. Continuity and change in late Byzantine and early Ottoman society. Birmingham: University of Birmingham, Centre for Byzantine Studies and Modern Greek.Google Scholar
Curtis, R. I. 1991. Garum and Salsamenta: production and commerce in materia medica. Leiden: Brill.CrossRefGoogle Scholar
Dalby, A. 1996. Siren feasts: a history of food and gastronomy in Greece. London: Routledge.Google Scholar
Deniro, M. J. & Epstein, S.. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–51.CrossRefGoogle Scholar
Dufour, E., Bocherens, H. & Marriotti, A.. 1999. Palaeodietary implications of isotopic variability in Eurasian lacustrine fish. Journal of Archaeological Science 26: 617–27.CrossRefGoogle Scholar
Dürrwächter, C., Craig, O. E., Collins, M. J., Burger, J. & Alt, K. W.. 2005. Beyond the grave: variability in Neolithic diets in southern Germany? Journal of Archaeological Science 33: 3948.CrossRefGoogle Scholar
Evershed, R., Payne, S., Sherratt, A., Copley, M., Coolidge, J., Urem-Kotsou, D., Kotsakis, K., Özdoan, M., Özdoan, A., Nieuwenhuyse, O., Akkermans, P., Bailey, D., Andeescu, R., Campbell, S., Farid, S., Hodder, I., Yalman, N., Özbaaran, M., Bçakc, E., Garfinkel, Y., Levy, T. & Burton, M.. 2008. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455: 528–31.CrossRefGoogle ScholarPubMed
Feyer, M. 1936. Nouvelles inscriptions d'Akraiphia. Bulletin de Correspondance Hellénique 60: 2736.Google Scholar
Foard, G. 1978. Systematic fieldwalking and the investigation of Saxon settlement in Northamptonshire. World Archaeology 9: 357–74.CrossRefGoogle Scholar
Fuller, B. T., Fuller, J. L., Sage, N. E., Harris, D. A., O'Connell, T. C. & Hedges, R. E. M.. 2004. Nitrogen balance and δ15N: why you're not what you eat during pregnancy. Rapid Communications in Mass Spectrometry 18: 2889–896.CrossRefGoogle Scholar
Fuller, B. T., Fuller, J. L., Sage, N. E., Harris, D. A., O'Connell, T. C. & Hedges, R. E. M. 2005. Nitrogen balance and δ15N: why you're not what you eat during nutritional stress. Rapid Communications in Mass Spectrometry 19: 24972506.CrossRefGoogle Scholar
Gallant, T. 1985. A fisherman's tale (Miscellanea Greca 7). Gent: Belgian Archaeological Mission in Greece in collaboration with the Seminar for Greek Archaeology of the State University of Gent.Google Scholar
Grant, M. 2000. Galen on food and diet. London: Routledge.Google Scholar
Halstead, P. 1987. Traditional and ancient rural economy in Mediterranean Europe: plus ça change? Journal of Hellenic Studies 107: 7787.CrossRefGoogle Scholar
Hayfield, C. 1987. An archaeological survey of the Parish of Wharram Percy, East Yorkshire. I: The evolution of the Roman landscape (British Archaeological Reports British Series 172). Oxford: British Archaeological Reports.Google Scholar
Katzenberg, M. A. & Weber, A.. 1999. Stable isotope ecology and paleodiet in the lake Baikal region of Siberia. Journal of Archaeological Science 26: 651–9.CrossRefGoogle Scholar
Mariotti, A., Germon, J. C. & Leclerc, A.. 1982. Nitrogen isotope fractionation associated to the NO2-N2O step of denitrification in soils. Canadian Journal of Soil Science 62: 227–41.CrossRefGoogle Scholar
Miller, N. F. & Smart, T. L.. 1984. Intentional burning of dung as fuel: a mechanism for the incorporation of charred seeds into the archaeological record. Journal of Ethnobiology 4: 1528.Google Scholar
Minagawa, M. 1992. Reconstruction of human diet from δ13C and δ15N in contemporary Japanese hair: a stochastic method for estimating multisource contribution by double isotopic tracers. Applied Geochemistry 7: 145–58.CrossRefGoogle Scholar
Müldner, G. & Richards, M. P.. 2007. Stable isotope evidence for 1500 years of human diet at the city of York, UK. American Journal of Physical Anthropology 133: 682–97.CrossRefGoogle ScholarPubMed
O'Connell, T. C. & Hedges, R.E.M.. 1999. Investigations into the effect of diet on modern human hair isotopic values. American Journal of Physical Anthropology 108: 409–25.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Papathanasiou, A. 2003. Stable isotope analysis in Neolithic Greece and possible implications on human health. International Journal of Osteoarchaeology 13: 314–24.CrossRefGoogle Scholar
Raymond, P. A. & Bauer, J. E.. 2001. Use of 14C and 13C natural abundances for evaluating riverine, estuarine and coastal DOC and POC sources and cycling: a review and synthesis. Organic Geochemistry 32: 469–85.CrossRefGoogle Scholar
Richards, M. P. & Hedges, R. E.M.. 1999. Stable isotope evidence for similarities in the types of marine foods used by late Mesolithic humans at sites along the Atlantic coast of Europe. Journal of Archaeological Science 26: 717–22.CrossRefGoogle Scholar
Richards, M. P. & Vika, E.. 2008. Stable isotope results from new sites in the Peloponnese: Sykia, Kalamaki, and Spaliareika, in Martlew, H., Tzedakis, Y. & Jones, M. (ed.) Archaeology meets science: biomolecular and site investigations in Bronze Age Greece: 231–5. Oxford: Oxbow.Google Scholar
Rowley-Cowny, P. 1981. Slash and burn in the temperate European Neolithic, in Mercer, R. (ed.) Farming practice in British prehistory: 3649. Edinburgh: University Press.Google Scholar
Roy, J. 2007. The consumption of dog-meat in Classical Greece, in Mee, C. & Renard, J. (ed.) Cooking up the past. Food and culinary practices in the Neolithic and Bronze Age Aegean: 342–53. Oxford: Oxbow.Google Scholar
Schiefsky, M. J. 2005. Hippocrates: on ancient medicine (Studies in Ancient Medicine). Leiden: Brill.CrossRefGoogle Scholar
Schoeller, D. A., Minagawa, M., Slater, R. & Kaplan, I. R.. 1986. Stable isotopes of carbon, nitrogen, and hydrogen in the contemporary American food web. Ecology of Food and Nutrition 18: 159–70.CrossRefGoogle Scholar
Schoeninger, M. J. & Deniro, M.J.. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48: 625–39.CrossRefGoogle Scholar
Schwarcz, H. P., Dupras, T. L. & Fairgrieve, S. I.. 1999. 15N enrichment in the Sahara: in search of a global relationship. Journal of Archaeological Science 26: 629–36.CrossRefGoogle Scholar
Snyder, L. M. & Klippel, W. E.. 2003. From Lerna to Kastro: further thoughts on dogs as food in ancient Greece: perceptions, prejudices and reinvestigations, in Hamilakis, Y., Gamble, C., Halstead, P. & Kotjabopoulou, E. (ed.) Zooarchaeology in Greece: recent advances: 221–38. London: British School at Athens.Google Scholar
Sponheimer, M., Robinson, T., Ayliffe, L., Roeder, B., Hammer, J., Passey, B., West, A., Cerling, T., Dearing, D. & Ehleringer, J.. 2003. Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled feeding study. International Journal of Osteoarchaeology 13: 8087.CrossRefGoogle Scholar
Spurr, M.S. 1986. Arable cultivation in Roman Italy c. 200 BC-c. AD 100 (Journal of Roman Studies Monographs 3). London: Society for the Promotion of Roman Studies.Google Scholar
Vika, E., Richards, M. P., Schutkowski, H. & Aravantinos, V.. In press. Temporal and spatial variations in diet in prehistoric Thebes: the case of the Bronze Age mass burial, in Richards, M. & Papathanasiou, A. (ed.) Stable isotope dietary studies of prehistoric and historic Greek populations (Occasional Wiener Laboratory Series). Athens: American School of Classical Studies in Athens.Google Scholar