Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T04:01:56.942Z Has data issue: false hasContentIssue false

Biaxially stretchable transparent conductors that use nanowire networks

Published online by Cambridge University Press:  21 November 2014

Xinning Ho*
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075, Singapore
Chek Kweng Cheng
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075, Singapore
Ju Nie Tey
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075, Singapore
Jun Wei*
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075, Singapore
*
a)Address all correspondence to these authors. e-mail: xnho@SIMTech.a-star.edu.sg
Get access

Abstract

Stretchable transparent conductors are required for flexible and wearable electronics. This study demonstrates biaxially stretchable transparent conductors that use silver nanowire networks. The use of buckled nanowire networks has previously been reported to lend stretchability to the transparent conductor in a single axis. However, a nanowire network that is prestrained and then buckled out-of-plane biaxially shows a deterioration of the electrical conductivity after a single cycle of stretching and releasing the strain uniaxially. This has been attributed to the loss of good electrical contact between the nanowires. By hot pressing the out-of-plane buckled nanowires to obtain an in-plane wavy nanowire network with good wire-to-wire junctions, a biaxially stretchable transparent conductor that maintains good electrical conductivity with stretching up to 10% is demonstrated. The methods of prestraining the nanowire network to achieve out-of-plane buckled nanowires and hot pressing the out-of-plane buckled nanowires to obtain an in-plane wavy nanowire network with fused junctions are expected to be practical for other classes of percolative networks based on one-dimensional (1D) materials used in flexible and stretchable applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chun, K-Y., Oh, Y., Rho, J., Ahn, J-H., Kim, Y-J., Choi, H.R., and Baik, S.: Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853 (2010).Google Scholar
Kim, K.H., Vural, M., and Islam, M.F.: Single-walled carbon nanotube aerogel-based elastic conductors. Adv. Mater. 23, 2865 (2011).Google Scholar
Huang, Y.Y. and Terentjev, E.M.: Tailoring the electrical properties of carbon nanotubes-polymer composite. Adv. Funct. Mater. 20, 4062 (2010).CrossRefGoogle Scholar
Liu, K., Sun, Y., Liu, P., Lin, X., Fan, S., and Jiang, K.: Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 21, 2721 (2011).Google Scholar
Shin, M.K., Oh, J., Lima, M., Kozlov, M.E., Kim, S.J., and Baughman, R.H.: Elastomeric conductive composites based on carbon nanotube forests. Adv. Mater. 22, 2663 (2010).Google Scholar
Huang, S., Li, L., Yang, Z., Zhang, L., Saiyin, H., Chen, T., and Peng, H.: A new and general fabrication of an aligned carbon nanotube/polymer film for electrode applications. Adv. Mater. 23, 4707 (2011).Google Scholar
Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., and Someya, T.: A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468 (2008).Google Scholar
Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., and Hata, K.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296 (2011).CrossRefGoogle ScholarPubMed
Zhang, Y., Sheehan, C.J., Zhai, J., Zou, G., Luo, H., Xiong, J., Zhu, Y.T., and Jia, Q.X.: Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22, 3027 (2010).Google Scholar
Zhu, Y. and Xu, F.: Buckling of aligned carbon nanotubes as stretchable conductors: A new manufacturing strategy. Adv. Mater. 24, 1073 (2012).Google Scholar
Xu, F., Wang, X., Zhu, Y., and Zhu, Y.: Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 22, 1279 (2012).CrossRefGoogle Scholar
Kim, R-H., Bae, M-H., Kim, D.G., Cheng, H., Kim, B.H., Kim, D-H., Li, M., Wu, J., Du, F., Kim, H-S., Kim, S., Estrada, D., Hong, S.W., Huang, Y., Pop, E., and Rogers, J.A.: Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881 (2011).Google Scholar
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J-H., Kim, P., Choi, J-Y., and Hong, B.H.: Large scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).CrossRefGoogle ScholarPubMed
Lipomi, D.J., Tee, B.C-K., Vosgueritchian, M., and Bao, Z.: Stretchable organic solar cells. Adv. Mater. 23, 1771 (2011).Google Scholar
Lipomi, D.J., Lee, J.A., Vosgueritchian, M., Tee, B.C-K., Bolander, J.A., and Bao, Z.: Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem. Mater. 24, 373 (2012).CrossRefGoogle Scholar
Lee, P., Lee, J., Lee, H., Yeo, J., Hong, S., Nam, K.H., Lee, D., Lee, S.S., and Ko, S.H.: Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326 (2012).CrossRefGoogle ScholarPubMed
Akter, T. and Kim, W.S.: Reversible stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl. Mater. Interfaces 4, 1855 (2012).Google Scholar
Lee, J-Y., Conner, S.T., Cui, Y., and Peumans, P.: Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689 (2008).CrossRefGoogle ScholarPubMed
Scardaci, V., Coull, R., Lyons, P.E., Rickard, D., and Coleman, J.N.: Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small 7, 2621 (2011).Google Scholar
De, S., Higgins, T.M., Lyons, P.E., Doherty, E.M., Nirmalraj, P.N., Blau, W.J., Boland, J.J., and Coleman, J.N.: Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 3, 1767 (2009).CrossRefGoogle ScholarPubMed
Hu, L., Kim, H.S., Kim, J-Y., Peumans, P., and Cui, Y.: Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955 (2010).CrossRefGoogle ScholarPubMed
Ho, X., Tey, J., Liu, W., Cheng, C.K., and Wei, J.: Biaxially stretchable silver nanowire transparent conductors. J. Appl. Phys. 113, 044311 (2013).Google Scholar
Lee, M-S., Lee, K., Kim, S-Y., Lee, H., Park, J., Choi, K-H., Kim, H-K., Kim, D-G., Lee, D-Y., Nam, S.W., and Park, J-U.: High-performance, transparent and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13, 2814 (2013).Google Scholar
Zhu, Y., Sun, Z., Yan, Z., Jin, Z., and Tour, J.M.: Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 5, 6472 (2011).Google Scholar
Hu, L., Wu, H., and Cui, Y.: Metal nanogrids, nanowires and nanofibers for transparent electrodes. MRS Bull. 36, 760 (2011).Google Scholar
Catrysse, P.B. and Fan, S.H.: Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. Nano Lett. 10, 2944 (2010).Google Scholar
Ho, X., Lu, H., Liu, W., Tey, J., Cheng, C.K., Kok, E., and Wei, J.: Electrical and optical properties of hybrid transparent electrodes that use metal grids and graphene films. J. Mater. Res. 28, 620 (2013).Google Scholar
Lu, N., Wang, S., Suo, Z., and Vlassak, J.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).Google Scholar
Ho, X. and Wei, J.: Films of carbon nanomaterials for transparent conductors. Materials 6, 2155 (2013).Google Scholar
Zhu, Y., Qin, Q., Xu, F., Fan, F., Ding, Y., Zhang, T., Wiley, B.J., and Wang, Z.L.: Size effects on elasticity, yielding and fracture of silver nanowires: In situ experiments. Phys. Rev. B 85, 045443 (2012).CrossRefGoogle Scholar
Yoo, J.H., Oh, S.I., and Jeong, M.S.: The enhanced elastic modulus of nanowires associated with multitwins. J. Appl. Phys. 107, 094316 (2010).Google Scholar
Gunawidjaja, R., Ko, H., Jiang, C., and Tsukruk, V.V.: Buckling behavior of highly oriented silver nanowire encapsulated within layer-by-layer films. Chem. Mater. 19, 2007 (2007).Google Scholar
Wu, J., Zang, J., Rathmell, A.R., Zhao, X., and Wiley, B.J.: Reversible sliding in networks of nanowires. Nano Lett. 13, 2381 (2013).Google Scholar
Garnett, E.C., Cai, W., Cha, J.J., Mahmood, F., Connor, S.T., Christoforo, M.G., Cui, Y., McGehee, M.D., and Brongersma, M.L.: Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241 (2012).Google Scholar
Lee, J., Lee, I., Kim, T-S., and Lee, J-Y.: Efficient welding of silver nanowire networks without post-processing. Small 9, 2887 (2013).CrossRefGoogle ScholarPubMed
Kang, B., Yun, J., Kim, S-G., and Yang, M.: Adaptive fabrication of a flexible electrode by optically self-selected interfacial adhesion and its application to highly transparent and conductive film. Small 9, 2111 (2013).Google Scholar
Tokuno, T., Nogi, M., Karakawa, M., Jiu, J., Nge, T.T., Aso, Y., and Suganuma, K.: Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4, 1215 (2011).Google Scholar
Rogers, J.A., Someya, T., and Huang, Y.: Materials and mechanics for stretchable electronics. Science 327, 1603 (2010).Google Scholar
Kim, D-H., Xiao, J., Song, J., Huang, Y., and Rogers, J.A.: Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108 (2010).CrossRefGoogle ScholarPubMed
Zhang, Y., Xu, S., Fu, H., Lee, J., Su, J., Hwang, K-C., Rogers, J.A., and Huang, Y.: Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter. 9, 8062 (2013).Google Scholar