Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T05:01:20.758Z Has data issue: false hasContentIssue false

Two-phase filtered mass density function for LES of turbulent reacting flows

Published online by Cambridge University Press:  05 November 2014

Z. Li
Affiliation:
Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
A. Banaeizadeh
Affiliation:
Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
F. A. Jaberi*
Affiliation:
Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
*
Email address for correspondence: jaberi@egr.msu.edu

Abstract

This paper describes a new computational model developed based on the filtered mass density function (FMDF) for large-eddy simulation (LES) of two-phase turbulent reacting flows. The model is implemented with a unique Lagrangian–Eulerian–Lagrangian computational methodology. In this methodology, the resolved carrier gas velocity field is obtained by solving the filtered form of the compressible Navier–Stokes equations with high-order finite difference (FD) schemes. The gas scalar (temperature and species mass fractions) field and the liquid (droplet) phase are both obtained by Lagrangian methods. The two-way interactions between the phases and all the Eulerian and Lagrangian fields are included in the new two-phase LES/FMDF methodology. The results generated by LES/FMDF are compared with direct numerical simulation (DNS) data for a spatially developing non-reacting and reacting evaporating mixing layer. Results for two more complex and practical flows (a dump combustor and a double-swirl burner) are also considered. For all flows, it is shown that the two-phase LES/FMDF results are consistent and accurate.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: CCS-2 Computer and Computational Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

§

Present address: Altair Engineering Inc., 2685 Marine Way, Suite 1421, Mountain View, CA 94043, USA.

References

Afshari, A., Jaberi, F. A. & Shih, T. I.-P. 2008 Large-eddy simulations of turbulent flows in an axisymmetric dump combustor. AIAA J. 46, 15761592.Google Scholar
Almeida, T. & Jaberi, F. A. 2006 Direct numerical simulations of a planar jet laden with evaporating droplets. Intl J. Heat Mass Transfer 49, 21132123.CrossRefGoogle Scholar
Almeida, T. & Jaberi, F. A. 2008 Large eddy simulation of a particle-laden turbulent jet flow with a stochastic two-phase subgrid closure. Intl J. Heat Mass Transfer 51, 683695.CrossRefGoogle Scholar
Apte, S. V., Gorokhovski, M. & Moin, P. 2003 LES of atomizing spray with stochastic modeling of secondary breakup. Intl J. Multiphase Flow 29, 15031522.CrossRefGoogle Scholar
Apte, S. V., Mahesh, K., Moin, P. & Oefelein, J. C. 2003 Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. Intl J. Multiphase Flow 29, 13111331.CrossRefGoogle Scholar
Armenio, V., Piomelli, U. & Fiorotto, V. 1999 Effect of the subgrid scales on particle motion. Phys. Fluids 11, 30303042.CrossRefGoogle Scholar
Ashgriz, N. & Poo, J. Y. 1991 Flux line-segment model for advection and interface reconstruction. J. Comput. Phys. 93, 449468.Google Scholar
Banaeizadeh, A., Li, Z. & Jaberi, F. A. 2011 Compressible scalar filtered mass density function model for high speed turbulent flows. AIAA J. 49, 21302143.Google Scholar
Bellan, J. 2000 Perspectives on large eddy simulations for sprays: issues and solutions. Atomiz. Sprays 10, 409425.CrossRefGoogle Scholar
Boivin, M., Simonin, O. & Squires, K. D. 2000 On the prediction of gas–solid flows with two-way coupling using large eddy simulation. Phys. Fluids 12, 20802090.Google Scholar
Borghi, R. 1988 Turbulent combustion modeling. Prog. Energy Combust. Sci. 14, 245292.Google Scholar
Brooke, J. W., Hanratty, T. J. & McLaughlin, J. B. 1994 Free-flight mixing and deposition of aerosols. Phys. Fluids 6, 34043415.Google Scholar
Brooke, J. W., Kontomaris, K., Hanratty, T. J. & McLaughlin, J. B. 1992 Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids 4, 825834.Google Scholar
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.Google Scholar
Chen, M. & McLaughlin, J. B. 1995 A new correlation for the aerosol deposition rate in vertical ducts. J. Colloid Interface Sci. 169, 437455.Google Scholar
Colucci, P. J., Jaberi, F. A., Givi, P. & Pope, S. B. 1998 Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10, 499515.Google Scholar
Cressman, J. R., Davoudi, J., Goldburg, W. I. & Schumacher, J. 2004 Eulerian and Lagrangian studies in surface flow turbulence. New J. Phys. 6, 5377.Google Scholar
Crowe, C., Sommerfeld, M. & Tsuji, Y. 1998 Multiphase Flows with Droplets and Particles. CRC.Google Scholar
Cuenot, B., Boileau, M., Pascaud, S., Mossa, J.-B., Riber, E., Poinsot, T. & B’erat, C.2006 Large eddy simulation of two-phase reacting flows. In ECCOMAS CFD 2006, Egmond Aan Zee, The Netherlands.Google Scholar
Dopazo, C. & O’Brien, E. E. 1976 Statistical treatment of non-isothermal reactions in turbulence. Combust. Sci. Technol. 13, 99112.CrossRefGoogle Scholar
Dukowicz 1980 Particle–fluid numerical model for liquid sprays. J. Comput. Phys. 35, 229253.Google Scholar
Elghobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.CrossRefGoogle Scholar
Elghobashi, S. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. Part 1. Turbulence modification. Phys. Fluids 5, 17901801.CrossRefGoogle Scholar
Faeth, G. M. 1983 Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 9, 176.Google Scholar
Faeth, G. M. 1987 Mixing, transport and combustion in sprays. Prog. Energy Combust. Sci. 13, 293345.CrossRefGoogle Scholar
Fox, O. R. 2003 Computational Models for Turbulent Reacting Flows. Cambridge University Press.Google Scholar
Gao, F. & O’Brien, E. E. 1993 A large eddy scheme for turbulent reacting flows. Phys. Fluids A 5, 12821284.Google Scholar
Gardiner, W. 1990 Handbook of Stochastic Methods. Springer.Google Scholar
Ge, H.-W. & Gutheil, E. 2008 Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling. Combust. Flame 153, 173185.Google Scholar
Gicquel, L. Y. M., Givi, P., Jaberi, F. A. & Pope, S. B. 2002 Velocity filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 14, 11961213.Google Scholar
Givi, P. 2006 Filtered density function for subgrid scale modeling of turbulent combustion. AIAA J. 44, 1623.Google Scholar
Haworth, D. C. 2010 Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168259.Google Scholar
Herrmann, M.2003 Modeling primary breakup: a three-dimensional Eulerian level set /vortex sheet method for two-phase interface dynamics. Center for Turbulence Research, Stanford University, Annual Research Brief, pp. 185–196.Google Scholar
Hsu, O., Pang, B. & Yu, K. H.2001 Active control studies for advanced propulsion: temperature dependence of critical fuel flux. In Proceedings of the 14th ONR Propulsion Meeting, pp. 19–24.Google Scholar
Jaberi, F. A., Colucci, P. J., James, S., Givi, P. & Pope, S. B. 1999 Filtered mass density function for large eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85121.Google Scholar
Jaberi, F. A. & Mashayek, F. 2000 Temperature decay in two-phase turbulent flows. Intl J. Heat Mass Transfer 43, 9931005.CrossRefGoogle Scholar
James, S. & Jaberi, F. A. 2000 Large scale simulations of two-dimensional nonpremixed methane jet flames. Combust. Flame 123, 465487.Google Scholar
Karlin, S. & Taylor, H. M. 1990 A Second Course in Stochastic Processes. Academic Press, first published 1981.Google Scholar
Kuerten, J. G. M. 2006 Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108.CrossRefGoogle Scholar
Lakehal, D. 2002 On the modeling of multiphase turbulent flows for environmental and hydrodynamic applications. Intl J. Multiphase Flow 28, 823863.Google Scholar
Lasheras, J. C. & Hopfinger, E. J. 2000 Liquid jet instability and atomization in a coaxial gas stream. Annu. Rev. Fluid Mech. 32, 275308.Google Scholar
Leboissetier, A., Okong’o, N. & Bellan, J. 2005 Consistent large eddy simulation of a temporal mixing layer laden with evaporating drops. Part 2. A posteriori modeling. J. Fluid Mech. 523, 3778.Google Scholar
Lefebvre, A. H. 1989 Atomization Sprays. Hemisphere.Google Scholar
Li, Z., Jaberi, F. A. & Shih, T. I.-P. 2007 A hybrid Lagrangian–Eulerian particle-level set method for numerical simulations of two-fluid turbulent flows. Intl J. Numer. Meth. Fluids 56, 22712300.Google Scholar
Liao, S., Mashayek, F. & Guo, D. 2001 Numerical simulations of particle-laden axisymmetric turbulent flows. Numer. Heat Transfer A 39, 847855.Google Scholar
Lin, S. P. & Reitz, R. D. 1998 Droplet and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85105.Google Scholar
Linck, M., Gupta, A. K., Bourhis, G. & Yu, K.2006 Combustion characteristics of pressurized swirling spray flame and unsteady two-phase exhaust jet, AIAA Paper AIAA-2006-377.Google Scholar
Ling, W., Chung, J. N. & Crowe, C. T. 2000 Direct numerical simulation of the two-way coupled interaction between particles and mixing layer. Proc. R. Soc. Lond. A 456, 29312955.Google Scholar
Loth, E. 2000 Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Energy Combust. Sci. 26, 161233.Google Scholar
Madnia, C. K., Jaberi, F. A. & Givi, P. 2006 Large eddy simulation of heat and mass transport in turbulent flows. In Handbook of Numerical Heat Transfer, 2nd edn (ed. Minkowycz, W. J., Sparrow, E. M. & Murthy, J. Y.), chap. 5, pp. 167189. Wiley.Google Scholar
Mahesh, K., Constantinescu, G., Apte, S., Iaccarino, G., Ham, F. & Moin, P. 2006 Large-eddy simulation of reacting turbulent flows in complex geometries. Trans. ASME J. Appl. Mech. 73, 374381.Google Scholar
Mashayek, F. 1998a Direct numerical simulations of evaporating droplet dispersion in forced low Mach number turbulence. Intl J. Heat Mass Transfer 41, 26012617.Google Scholar
Mashayek, F. 1998b Droplet–turbulence interactions in low-Mach-number homogeneous shear two-phase flows. J. Fluid Mech. 376, 163203.Google Scholar
Mashayek, F. & Jaberi, F. A. 1999 Particle dispersion in forced isotropic low Mach number turbulence. Intl J. Heat Mass Transfer 42, 28232836.Google Scholar
Mashayek, F., Jaberi, F. A., Miller, R. S. & Givi, P. 1997 Dispersion and polydispersity of droplets in stationary isotropic turbulence. Intl J. Multiphase Flow 23, 337355.Google Scholar
Mashayek, F. & Pandya, R. 2003 Analytical description particle/droplet-laden turbulent flows. Prog. Energy Combust. Sci. 29, 329378.Google Scholar
Maxey, M. R., Patel, B. K., Chang, E. J. & Wang, L. P. 1997 Particle dispersion in forced isotropic low Mach number turbulence. Fluid Dyn. Res. 20, 143156.Google Scholar
McLaughlin, J. B. 1989 Aerosol particle deposition in numerically simulated channel flow. Phys. Fluids 1, 12111224.Google Scholar
Menon, S. 2000 Subgrid combustion modeling for LES of single and two-phase reacting flows. In Advances in LES of Complex Flows: Proceedings of the Euromech Colloquium 412 (ed. Friedrich, R. & Rodi, W.), pp. 329351. Kluwer.Google Scholar
Menon, S. & Patel, N. 2006 Subgrid modeling for simulation of spray combustion in large-scale combustors. AIAA J. 44, 709723.Google Scholar
Miller, R. S. & Bellan, J. 1994 Direct numerical simulation and subgrid analysis of a transitional droplet-laden mixing layer. Phys. Fluids 12, 650671.Google Scholar
Miller, R. S. & Bellan, J. 1999 Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. J. Fluid Mech. 384, 293338.CrossRefGoogle Scholar
Miller, R. S., Harstad, K. & Bellan, J. 1998 Evaluation of equilibrium and non-equilibrium evaporation models for many droplet gas–liquid flow simulation. Intl J. Multiphase Flow 24, 10251055.Google Scholar
Minier, J. & Peirano, E. 2001 The PDF approach to turbulent polydispersed two-phase flows. Phys. Rep. 352, 1214.Google Scholar
Moin, P. 2004 Large eddy simulation of multi-phase turbulent flows in realistic combustors. Prog. Comput. Fluid Dyn. Intl J. 4, 237240.Google Scholar
Nik, M. B., Yilmaz, S. L., Sheikhi, M. R. H., Givi, P. & Pope, S. B. 2010a Simulation of Sandia flame D using velocity–scalar filtered density function. AIAA J. 48, 15131522.Google Scholar
Nik, M. B., Yilmaz, S. L., Sheikhi, M. R. H. & Givi, P. 2010b Grid resolution effects on VSFMDF/LES. Flow Turbul. Combust. 85, 677688.Google Scholar
O’Brien, E. E. 1980 The probability density function (PDF) approach to reacting turbulent flows. In Turbulent Reacting Flows (ed. Libby, P. A. & Williams, F. A.), chap. 5, pp. 185218. Springer.Google Scholar
Okong’o, N. & Bellan, J. 2000 A priori subgrid analysis of temporal mixing layers with evaporating droplets. Phys. Fluids 12, 15731591.Google Scholar
Okong’o, N. & Bellan, J. 2004 Consistent large eddy simulation of a temporal mixing layer laden with evaporating drops. Part 1. Direct numerical simulation, formulation, and a priori analysis. J. Fluid Mech. 499, 147.Google Scholar
Ounis, H., Ahmadi, G. & McLaughlin, J. B. 1993 Brownian particle deposition in a directly simulated turbulent channel flow. Phys. Fluids 5, 14271432.Google Scholar
Pandya, R. & Mashayek, F. 2002 Two-fluid large-eddy simulation approach for particle-laden turbulent flows. Intl J. Heat Mass Transfer 45, 47534759.Google Scholar
Patel, N., Kirtas, M., Sankaran, V. & Menon, S. 2007 Simulation of spray combustion in a lean-direct injection combustor. Proc. Combust. Inst. 31, 23272334.Google Scholar
Pedinotti, S., Mariotti, G. & Banerjee, S. 1992 Direct numerical simulation of particle behavior in the wall region of turbulent flows in horizontal channels. Intl J. Multiphase Flow 18, 927941.Google Scholar
Pope, S. B. 1985 PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119192.Google Scholar
Pope, S. B. 1990 Computations of turbulent combustion: progress and challenges. Proc. Combust. Inst. 23, 591612.Google Scholar
Post, S. L. & Abraham, J. 2002 Modeling the outcome of drop–drop collisions in diesel sprays. Intl J. Multiphase Flow 28, 9971019.Google Scholar
Raman, V., Pitsch, H. & Fox, R. O. 2005 Hybrid large-eddy simulation/Lagrangian filtered density function approach for simulating turbulent combustion. Combust. Flame 143, 5678.Google Scholar
Ranz, W. E. & Marshall, W. R. 1952 Evaporation from drops. Chem. Eng. Prog. 48, 141146.Google Scholar
Salman, H. & Soteriou, M. 2004 Lagrangian simulation of evaporating droplet sprays. Phys. Fluids 16, 46014622.CrossRefGoogle Scholar
Sankaran, V. & Menon, S. 2002 LES of spray combustion in swirling flows. J. Turbul. 3, 123.Google Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567603.Google Scholar
Schmidt, D. P. & Rutland, C. J. 2000 A new droplet collision algorithm. J. Comput. Phys. 164, 6280.Google Scholar
Seta, T., Kono, K. & Chen, S. 2003 Lattice Boltzmann method for two-phase flows. Intl J. Mod. Phys. B 17, 169172.Google Scholar
Sethian, J. A. & Smereka, P. 2003 Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341372.Google Scholar
Sheikhi, M. R. H., Drozda, T. G., Givi, P., Jaberi, F. A. & Pope, S. B. 2005 Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia flame D). Proc. Combust. Inst. 30, 549556.Google Scholar
Sheikhi, M. R. H., Drozda, T. G., Givi, P. & Pope, S. B. 2003 Velocity–scalar filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 15, 23212337.Google Scholar
Sheikhi, M. R. H., Givi, P. & Pope, S. B. 2007 Velocity–scalar filtered mass density function for large eddy simulation of turbulent flows. Phys. Fluids 19, 095106.Google Scholar
Sheikhi, M. R. H., Givi, P. & Pope, S. B. 2009 Frequency–velocity–scalar filtered mass density function for large eddy simulation of turbulent flows. Phys. Fluids 21, 075102.Google Scholar
Shen, L. & Yue, D. 2001 Large-eddy simulation of free-surface turbulence. J. Fluid Mech. 440, 75116.Google Scholar
Shirolkar, J. S., Coimbra, C. F. M. & McQuay, M. Q. 1996 Fundamental aspects of modeling turbulent particle dispersion in dilute flows. Prog. Energy Combust. Sci. 22, 363399.Google Scholar
Shyy, W. & Narayanan, R. 1999 Fluid Dynamics at Interface. Cambridge University Press.Google Scholar
Sirignano, W. A. 1999 Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press.Google Scholar
Squires, K. D. & Eaton, J. K. 1990a Particle response and turbulence modification in isotropic turbulence. Phys. Fluids 2, 11911203.Google Scholar
Squires, K. D. & Eaton, J. K. 1990b Preferential concentration of particles by turbulence. Phys. Fluids 3, 11691178.Google Scholar
Squires, K. D. & Eaton, J. K. 1991 Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 226, 135.Google Scholar
Stollinger, M., Naud, B., Roekaerts, D. & Heinz, S. 2013 PDF modeling and simulations of pulverized coal combustion. Part 1. Theory and modeling. Combust. Flame 160, 384395.Google Scholar
Truesdell, G. C. & Elghobashi, S. 1994 On the two-way interaction between homogeneous turbulence and dispersed solid particles. Part 2. Particle dispersion. Phys. Fluids 6, 14051407.Google Scholar
Wang, L.-P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles in isotropic turbulence. J. Fluid Mech. 256, 2768.Google Scholar
Yaldizli, M., Mehravaran, K. & Jaberi, F. A. 2010 Large-eddy simulations of turbulent methane jet flames with filtered mass density function. Intl J. Heat Mass Transfer 53, 25512562.Google Scholar
Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T. & Tsuji, Y. 2001 Large eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303334.Google Scholar
Yeh, F. & Lei, U. 1991a On the motion of small particles in a homogeneous isotropic turbulent flow. Phys. Fluids 3, 25712586.Google Scholar
Yeh, F. & Lei, U. 1991b On the motion of small particles in a homogeneous turbulent shear flow. Phys. Fluids 3, 27582776.CrossRefGoogle Scholar
Yilmaz, S. L., Nik, M. B., Givi, P. & Strakey, P. A. 2010 Scalar filtered density function for large eddy simulation of a Bunsen burner. J. Propul. Power 26, 8493.Google Scholar
Yuu, S., Ueno, T. & Umekage, T. 2001 Numerical simulation of the high Reynolds number slit nozzle gas-particle jet using subgrid-scale coupling. Chem. Eng. Sci. 56, 42934307.Google Scholar
Zhao, X. & Haworth, D. C. 2014 Transported PDF pulverized coat jet flames. Combust. Flame 161, 18661882.Google Scholar
Zhu, M., Bray, K. N. C., Rumberg, O. & Rogg, B. 2000 PDF transport equations for two-phase reactive flows and sprays. Combust. Flame 122, 327338.Google Scholar