Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T14:46:48.754Z Has data issue: false hasContentIssue false

Effect of multiwalled carbon nanotube loading on the properties of Nafion® membranes

Published online by Cambridge University Press:  31 October 2014

Nonhlanhla Precious Cele*
Affiliation:
Department of Mechanical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
Suprakas Sinha Ray
Affiliation:
DST/CSIR Nanotechnology Innovation Centre, National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Brummeria Pretoria 0001, South Africa
*
a)Address all correspondence to this author. e-mail: nonhlanhla.cele@gmail.com
Get access

Abstract

The dispersion of carbon nanotubes is one of the problems in the application of polymer nanocomposites. In this study, the effect of chemical functionalization of the carbon nanotube surface on the dispersion of the tubes within a polymer is reported. The effect of carbon nanotube weight loading on the properties of polymer membrane was also studied. Multiwalled carbon nanotubes were dispersed in Nafion® matrix by melt processing techniques to form nanocomposite membranes. The morphology, dc electrical conductivity, thermal stability, mechanical properties, and proton conductivity of these nanocomposites were investigated. Nitric acid functionalized carbon nanotubes were evenly dispersed with Nafion as observed by scanning electron microscopy. The measurements of mechanical properties indicate that this processing method and carbon nanotube loading can improve the modulus of the nanocomposites.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xu, J.Z., Zhao, W.B., Zhu, J.J., Li, G.X., and Chen, H.Y.: Fabricating gold nanoparticle-oxide nanotube composite materials by a self-assembly method. J. Colloid Interface Sci. 290(2), 450454 (2005).CrossRefGoogle ScholarPubMed
Yang, C., Srinivasan, S., Bocarsly, A.B., Tulyani, S., and Benzinger, J.B.: A comparison of physical properties and fuel cell performance of nafion and zirconium phosphate/Nafion composite membranes. J. Membr. Sci. 237, 145161 (2007).CrossRefGoogle Scholar
Shen, M. and Scott, K.: Power loss and its effect on fuel cell performance. J. Power Sources 148, 2431 (2005).Google Scholar
Lee, W., Kim, H., and Chang, H.: Nafion based organic/inorganic composite membrane for air-breathing direct methanol fuel cells. J. Membr. Sci. 292, 2934 (2007).Google Scholar
Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Gross, S., Maragno, C., and Tondello, E.: Recent trends on nanocomposites based on Cu, Ag and Au clusters. Coord. Chem. Rev. 250(11), 12941314 (2006).Google Scholar
Nuñez, G.M., Fenoglio, R.J., and Resasco, D.E.: Enhanced methane production from methanol decomposition over Pt/TiO2 catalysts. React. Kinet., Catal. Lett. 40(1), 8994 (1989).Google Scholar
Yamaguchi, T., Kuroki, H., and Miyata, F.: DMFC performances using a porefilling polymer electrolyte membrane for portable usage. Electrochem. Commun. 7, 730734 (2005).Google Scholar
Elfring, G.J. and Struchtrup, H.: Thermodynamic considerations on the stability of water in Nafion. J. Membr. Sci. 297, 190198 (2007).Google Scholar
Souza, M.M., Ribeiro, N.F., and Schmal, M.: SOFC using pure hydrogen considering air back diffusion phenomenon. Int. J. Hydrogen Energy 32(2), 423425 (2007).Google Scholar
Hontsu, S., Nakamori, M., Kato, N., Tamata, H., Ishii, J., Matsumoto, T., and Kawai, T.: Formation of hydroxyapatite thin films on surface-modified polytetrafluoroethylene substrates. J. Appl. Phys. 37, L1169L1171 (1998).Google Scholar
Shao, Y.Y., Yin, G.P., Wang, Z.B., and Gao, Y.Z.: Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. J. Power Sources 167, 235242 (2007).Google Scholar
Cele, N.P., Sinha Ray, S., Pillai, S.K., Ndwandwe, O.M., Nonjola, S., Sikhwivhilu, L., and Mathe, M.K.: Carbon nanotubes based nafion composite membranes for fuel cell applications. Fuel Cells 10, 6471 (2010).Google Scholar
Jeong, U. and Xia, Y.: Synthesis and characterization of monodispersed spherical colloids. Adv. Mater. 17(1), 102106 (2003).CrossRefGoogle Scholar
Falk, M.: An infrared study of water in perfluorosulfonate (Nafion) membranes. Can. J. Chem. 58(1), 14961501 (1980).Google Scholar
Quezabo, S., Kwak, J.C.T., and Falk, M.: An infrared study of water-ion interactions in perfluorosulfonate (Nafion) membranes. Can. J. Chem. 62, 958966 (1984).Google Scholar
Yeager, H.L. and Steck, A.: Cation and water diffusion in nafion ion exchange membranes: Influence of polymer structure. J. Electrochem. Soc. 128(9), 18801884 (1981).Google Scholar
Xie, Q., Zhuang, Q., Wang, Q., Liu, X., Chen, Y., and Han, Z.: In situ synthesis and characterization of poly(2,5-benzoxazole)/multiwalled carbon nanotubes composites. Polymer 52(1), 52715276 (2011).CrossRefGoogle Scholar
Berens, A.R. and Hodge, I.M.: Effects of annealing and prior history on enthalpy relaxation in glassy polymers. Macromolecules 15(3), 756761 (1982).Google Scholar
Pavlidou, S. and Papaspyrides, C.D.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33, 11191198 (2008).Google Scholar
Shah, R.K., Kim, D.H., and Paul, D.R.: Morphology and properties of nanocomposites formed from ethylene/methacrylic acid copolymers and organoclays. Polymer 48(4), 10471057 (2007).CrossRefGoogle Scholar
Cui, L. and Paul, D.R.: Polymer nanocomposites from organoclays: Structure and properties. Macromol. Symp. 301(1), 915 (2011).Google Scholar
Wootthikanokkhan, J. and Seeponkai, N.: Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends. J. Appl. Polym. Sci. 102(6), 59415947 (2006).Google Scholar
Di Noto, V., Gliubizzi, R., Negro, E., and Pace, G.: Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes. J. Phys. Chem. B 110, 2497224986 (2006).Google Scholar
Ludvigsson, M., Lindgren, J., and Tegenfeldt, J.: FTRI study of wáter in cast nafion films. J. Electrochim. Acta 45, 22672271 (2000).Google Scholar
McNallya, T., Potschke, P., Halley, P., Murphy, M., Martin, D., Bell, S.E., Brennan, G.P., Bein, D., Lemoine, P., and Quinn, J.P.: Polyethylene multiwalled carbon nanotube composites. Polymer 46, 82228233 (2005).Google Scholar
Rotkin, S.V. and Subramoney, S.: Applied Physics of Carbon Nanotubes: Fundamentals and Theory (Springer, New York, NY, 2005); pp. 156239.Google Scholar
Bikiaris, D., Vassiliou, A., Chrissafis, K., Paraskevopoulos, K.M., Jannakoudakis, A., and Docoslis, A.: Degradation of polymer composite membranes. Polym. Degrad. Stab. 93, 952959 (2008).Google Scholar
Crum, N.G., Buckley, C.P., and Bucknall, C.B.: Principles of Polymer Engineering, 2nd ed. (Oxford Science, New York, 2012).Google Scholar
Tang, H.L., Pan, M., Jiang, S.P., Wang, X.E., and Ruan, Y.Z.: Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells. J. Electrochim. Acta 52, 53045311 (2007).Google Scholar
Scharfer, P., Schabel, W., and Kind, M.: Modelling of alcohol and water diffusion in fuel cell membranes-experimental validation by means of in situ Raman spectroscopy. Chem. Eng. Sci. 63, 46764684 (2008).Google Scholar