Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T19:28:09.031Z Has data issue: false hasContentIssue false

ON A CLASS OF ELLIPTIC SYSTEM OF SCHRÖDINGER–POISSON TYPE

Published online by Cambridge University Press:  24 September 2014

LUCAS C. F. FERREIRA
Affiliation:
Universidade Estadual de Campinas, IMECC – Departamento de Matemática, CEP 13083-859, Campinas-SP, Brazil email lcff@ime.unicamp.br
EVERALDO S. MEDEIROS*
Affiliation:
Universidade Federal da Paraíba, Departamento de Matemática, CEP 58051-900, João Pessoa-PB, Brazil email everaldo@mat.ufpb.br
MARCELO MONTENEGRO
Affiliation:
Universidade Estadual de Campinas, IMECC – Departamento de Matemática, CEP 13083-859, Campinas-SP, Brazil email msm@ime.unicamp.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove existence and qualitative properties of solutions for a nonlinear elliptic system arising from the coupling of the nonlinear Schrödinger equation with the Poisson equation. We use a contraction map approach together with estimates of the Bessel potential used to rewrite the system in an integral form.

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Publishing Association Inc. 

References

Ambrosetti, A. and Ruiz, D., ‘Multiple bound states for the Schrödinger–Poisson problem’, Commun. Contemp. Math. 10 (2008), 391404.CrossRefGoogle Scholar
Azzollini, A., ‘Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity’, J. Differential Equations 249 (2010), 17461763.Google Scholar
Azzollini, A., D’Avenia, P. and Pomponio, A., ‘On the Schrödinger–Maxwell equations under the effect of a general nonlinear term’, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 779791.Google Scholar
Azzollini, A., Pisani, L. and Pomponio, A., ‘Improved estimates and a limit case for the electrostatic Klein–Gordon–Maxwell system’, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), 449463.Google Scholar
Azzollini, A. and Pomponio, A., ‘Ground state solutions for the nonlinear Schrödinger–Maxwell equations’, J. Math. Anal. Appl. 345 (2008), 90108.Google Scholar
Benci, V. and Fortunato, D., ‘An eigenvalue problem for the Schrödinger–Maxwell equations’, Topol. Methods Nonlinear Anal. 11 (1998), 283293.Google Scholar
Benci, V. and Fortunato, D., ‘Solitary waves of the nonlinear Klein–Gordon equation coupled with Maxwell equations’, Rev. Math. Phys. 14 (2002), 409420.Google Scholar
Benguria, R., Brezis, H. and Lieb, E.-H., ‘The Thomas–Fermi–von Weizsäcker theory of atoms and molecules’, Comm. Math. Phys. 79 (1981), 167180.CrossRefGoogle Scholar
Candela, A. M. and Salvatore, A., ‘Multiple solitary waves for nonhomogeneous Schrödinger–Maxwell equations’, Mediterr. J. Math. 3 (2006), 483493.CrossRefGoogle Scholar
Carrillo, J. A., Ferreira, L. C. F. and Precioso, J. C., ‘A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity’, Adv. Math. 231 (2012), 306327.CrossRefGoogle Scholar
Cassani, D., ‘Existence and nonexistence of solitary waves for the critical Klein–Gordon equation coupled with Maxwell’s equations’, Nonlinear Anal. 58 (2004), 733747.Google Scholar
Catto, I. and Lions, P.-L., ‘Binding of atoms and stability of molecules in Hartree and Thomas–Fermi type theories. Part 1: A necessary and sufficient condition for the stability of general molecular systems’, Comm. Partial Differential Equations 17 (1992), 10511110.Google Scholar
Cerami, G. and Vaira, G., ‘Positive solutions for some nonautonomous Schrödinger–Poisson systems’, J. Differential Equations 248 (2010), 521543.CrossRefGoogle Scholar
Chen, S.-J. and Tang, C.-L., ‘Multiple solutions for nonhomogeneous Schrödinger–Maxwell and Klein–Gordon–Maxwell equations on ℝ3’, NoDEA Nonlinear Differential Equations Appl. 17 (2010), 559574.Google Scholar
Coclite, G. M., ‘A multiplicity result for the nonlinear Schrödinger–Maxwell equations’, Commun. Appl. Anal. 7 (2003), 417423.Google Scholar
D’Aprile, T. and Mugnai, D., ‘Nonexistence results for the coupled Klein–Gordon–Maxwell equations’, Adv. Nonlinear Stud. 4 (2004), 307322.Google Scholar
D’Aprile, T. and Mugnai, D., ‘Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations’, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 893906.CrossRefGoogle Scholar
D’Avenia, P., ‘Nonradially symmetric solutions of nonlinear Schödinger equation coupled with Maxwell equations’, Adv. Nonlinear Stud. 2 (2002), 177192.Google Scholar
Ferreira, L. C. F. and Montenegro, M., ‘Existence and asymptotic behavior for elliptic equations with singular anisotropic potentials’, J. Differential Equations 250 (2011), 20452063.CrossRefGoogle Scholar
Ferreira, L. C. F. and Montenegro, M., ‘A Fourier approach for nonlinear equations with singular data’, Israel J. Math. 193(1) (2013), 83107.CrossRefGoogle Scholar
Ferreira, L. C. F., Medeiros, E. S. and Montenegro, M., ‘On the Laplace equation with a supercritical nonlinear Robin boundary condition in the half-space’, Calc. Var. Partial Differential Equations 47(3–4) (2013), 667682.Google Scholar
Ferreira, L. C. F., Medeiros, E. S. and Montenegro, M., ‘A class of elliptic equations in anisotropic spaces’, Ann. Mat. Pura Appl. 192(4) (2013), 539552.Google Scholar
Grafakos, L., Classical and Modern Fourier Analysis (Pearson Education, Upper Saddle River, NJ, 2004).Google Scholar
Kikuchi, H., ‘On the existence of a solution for elliptic system related to the Maxwell–Schödinger equations’, Nonlinear Anal. 67 (2007), 14451456.Google Scholar
Lieb, E. H., ‘Thomas–Fermi and related theories and molecules’, Rev. Modern Phys. 53 (1981), 603641.Google Scholar
Lieb, E. H. and Simon, B., ‘The Thomas–Fermi theory of atoms, molecules and solids’, Adv. Math. 23 (1977), 22116.Google Scholar
Lions, P.-L., ‘Solutions of Hartree–Fock equations for Coulomb systems’, Comm. Math. Phys. 109 (1984), 3397.Google Scholar
Markowich, P., Ringhofer, C. and Schmeiser, C., Semiconductor Equations (Springer, New York, 1990).Google Scholar
Mugnai, D., ‘The Schrödinger–Poisson system with positive potential’, Comm. Partial Differential Equations 36 (2011), 10991117.Google Scholar
Ruiz, D., ‘Semiclassical states for coupled Schrödinger–Maxwell equations: concentration around a sphere’, Math. Models Methods Appl. Sci. 15 (2005), 141164.Google Scholar
Ruiz, D., ‘The Schrödinger–Poisson equation under the effect of a nonlinear local term’, J. Funct. Anal. 237 (2006), 655674.Google Scholar
Ruiz, D., ‘On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases’, Arch. Ration. Mech. Anal. 198 (2010), 349368.CrossRefGoogle Scholar
Salvatore, A., ‘Multiple solitary waves for a nonhomogeneous Schrödinger–Maxwell system in ℝ3’, Adv. Nonlinear Stud. 6 (2006), 157169.Google Scholar
Siciliano, G., ‘Multiple positive solutions for a Schrödinger–Poisson–Slater system’, J. Math. Anal. Appl. 365 (2010), 288299.Google Scholar
Stein, E. S., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30 (Princeton University Press, Princeton, NJ, 1970).Google Scholar
Sun, J., Chen, H. and Nieto, J. J., ‘On ground state solutions for some nonautonomous Schrödinger–Poisson systems’, J. Differential Equations 252 (2012), 33653380.CrossRefGoogle Scholar