Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T11:11:04.333Z Has data issue: false hasContentIssue false

A lacustrine record of the early stage of the Miocene Climatic Optimum in Central Europe from the Most Basin, Ohře (Eger) Graben, Czech Republic

Published online by Cambridge University Press:  16 January 2014

TOMÁŠ MATYS GRYGAR*
Affiliation:
Institute of Inorganic Chemistry AS CR, v.v.i., 250 68 Řež, Czech Republic
KAREL MACH
Affiliation:
Severočeské doly, j.s.c., 5. Května 213/4, 418 29 Bílina, Czech Republic
PETR SCHNABL
Affiliation:
Institute of Geology AS CR, v.v.i., Rozvojová 269, 165 00 Prague 6, Czech Republic
PETR PRUNER
Affiliation:
Institute of Geology AS CR, v.v.i., Rozvojová 269, 165 00 Prague 6, Czech Republic
JIŘÍ LAURIN
Affiliation:
Institute of Geophysics AS CR, v.v.i., Boční II/1401, 141 31 Prague 4, Czech Republic
MATHIEU MARTINEZ
Affiliation:
UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France UMR CNRS/Total/UPPA 5150 Laboratoire des Fluides Complexes et leurs Réservoirs, Université de Pau et des Pays de l'Adour, BP1155, 64013 Pau cedex, France
*
Author for correspondence: grygar@iic.cas.cz

Abstract

This study reports on a ~ 150 m thick macrofossil-barren sequence of siliciclastic sediments from a Burdigalian age (Early Miocene) freshwater lake. The lake was located within an incipient rift system of the Most Basin in the Ohře (Eger) Graben, which was part of the European Cenozoic Rift System, and had an original area of ≈ 1000 km2. Sediments from the HK591 core that cover the entire thickness of the lake deposits and some of the adjacent stratigraphic units were analysed by X-ray fluorescence spectroscopy (a proxy for element composition) and magnetic polarity measurement. The element proxies were subjected to frequency analysis, which provided estimated sedimentation rates, and allowed for sediment dating by magnetostratigraphy and orbital tuning of the age model. Based on the resulting age model and the known biostratigraphy, the lake was present between 17.4 and 16.6 Ma, which includes the onset of the Miocene Climatic Optimum in the latest Early Miocene. The identification of orbital forcing (precession, obliquity and short eccentricity cycles) confirms the stability of the sedimentary environment of the perennial lake in an underfilled basin. The dating allowed the sediment record to be interpreted in the context of the current knowledge of the European climate during that period. The stability of the sedimentary environment confirms that precipitation was relatively stable over the period recorded by the sediments.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul Aziz, H., Hilgen, F., Krijgsman, W., Sanz, E. & Calvo, J. P. 2000. Astronomical forcing of sedimentary cycles in the middle to late Miocene continental Cataluyd Basin (NE Spain). Earth and Planetary Science Letters 177, 922.Google Scholar
Abdul Aziz, H., van Dam, J., Hilgen, F. J. & Krijgsman, W. 2004. Astronomical forcing in Upper Miocene continental sequences: implications for the Geomagnetic Polarity Time Scale. Earth and Planetary Science Letters 222, 243–58.Google Scholar
Abels, H. A., Abdul Aziz, H., Calvo, J. P. & Tuenter, E. 2009. Shallow lacustrine carbonate microfacies document orbitally paced lake-level history in the Miocene Teruel Basin (North-East Spain). Sedimentology 56, 399419.Google Scholar
Alonso-Zarza, A. M., Melendez, A., Martin-Garcia, R., Herrero, M. J. & Martin-Perez, A. 2012. Discriminating between tectonism and climate signatures in palustrine deposits: lessons from the Miocene of the Teruel Graben, NE Spain. Earth-Science Reviews 113, 141–60.Google Scholar
Bailey, R. J. 2011. Buried trees and basin tectonics: a discussion. Stratigraphy 8, 16.Google Scholar
Berger, A. & Loutre, M.-F. 1994. Precession, eccentricity, obliquity, insolation and paleoclimates. In Long-Term Climatic Variations (eds Duplessy, J. C. & Spyridakis, M.-T.), pp. 107–51. Berlin: Springer-Verlag.Google Scholar
Böhme, M., Winklhofer, M. & Ilg, A. 2011. Miocene precipitation in Europe: temporal trends and spatial gradients. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 212–8.Google Scholar
Carroll, A. R. & Bohacs, K. M. 1999. Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology 27, 99102.Google Scholar
Chadima, M. & Hrouda, F. 2006. Remasoft 3.0 – a user friendly palaeomagnetic data browser and analyzer. Travaux Géophysiques 38, 20–1.Google Scholar
de Leeuw, A., Mandic, O., Vranjković, A., Pavelić, D., Harzhauser, M., Krijgsman, W. & Kuiper, K. F. 2010. Chronology and integrated stratigraphy of the Miocene Sinj Basin (Dinaride Lake System, Croatia). Palaeogeography, Palaeoclimatology, Palaeoecology 292, 155–67.Google Scholar
Dill, H. G. 2001. The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth-Science Reviews 53, 2593.Google Scholar
Dill, H. G., Dohrmann, R., Kaufhold, S. & Weber, B. 2011. Clay mineralogy and chemistry of fine-grained sediments. Environment analysis around the K/P boundary at Sekarna/Kasserine Island, Tunisia. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 188, 285–96.Google Scholar
Fejfar, O. 1988. The Neogene vertebrate paleontology sites of Czechoslovakia. In Proceedings of a NATO Advanced Research Workshop on European Mammal Chronology (eds Lindsay, E. H., Fahlbusch, V. & Mein, P.), pp. 211–36. New York: Plenum Press.Google Scholar
Fejfar, O., Dvorák, Z. & Kadlecová, E. 2003. New record of Early Miocene (MN3a) mammals in the open brown coal pit Merkur, North Bohemia, Czech Republic. Deinsea – Annual of the Natural History Museum Rotterdam 10, 163–82.Google Scholar
Fejfar, O. & Kvaček, Z. 1993. Excursion No. 3. Tertiary basins in Northwest Bohemia. Paleontologische Gesellschaft 63. Jahrestagung in Prag. Prague: Charles University and Czech Geological Society, 35 pp.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. 2012. The Geologic Time Scale 2012. Amsterdam: Elsevier BV, 1176 pp.Google Scholar
Grygar, T., Kadlec, J., Žigová, A., Mihaljevič, M., Nekutová, T., Lojka, R. & Světlík, I. 2009. Chemostratigraphic correlation of sediments containing expandable clay minerals based on ion exchange with Cu(II) triethylenetetramine. Clays and Clay Minerals 57, 168–82.Google Scholar
Grygar, T., Světlík, I., Lisá, L., Koptíková, L., Bajer, A., Wray, D. S., Ettler, V., Mihaljevič, M., Nováková, T., Koubová, M., Novák, J., Máčka, Z. & Smetana, M. 2010. Geochemical tools for the stratigraphic correlation of floodplain deposits of the Morava River in Straznicke Pomoravi, Czech Republic from the last millennium. Catena 80, 106–21.Google Scholar
Guo, Z.-T., Peng, S.-Z., Hao, Q.-Z., Biscaye, P.-E., An, Z.-S. & Liu, T. S. 2004. Late Miocene–Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Global and Planetary Change 41, 135–45.Google Scholar
Heslop, D. 2009. On the statistical analysis of the rock magnetic S-ratio. Geophysical Journal International 178, 159–61.Google Scholar
Hohenegger, J., Ćorić, S., Khatun, M., Pervesler, P., Rögl, F., Rupp, C., Selge, A., Uchman, A. & Wagreich, M. 2009. Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden-Sooss core. International Journal of Earth Sciences 98, 915–30.Google Scholar
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A. & Andersen, N. 2007. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth and Planetary Science Letters 261, 534–50.Google Scholar
Holcová, K. 2008. Foraminiferal species diversity in the Central Paratethys – a reflection of global or local events? Geologica Carpathica 59, 7185.Google Scholar
Jiménez-Moreno, G., de Leeuw, A., Mandic, O., Harzhauser, M., Pavelić, D., Krijgsman, W. & Vranjković, A. 2009. Integrated stratigraphy of the Early Miocene lacustrine deposits of Pag Island (SW Croatia): palaeovegetation and environmental changes in the Dinaride Lake System. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 193206.Google Scholar
Jiménez-Moreno, G., Mandic, O., Harzhauser, M., Pavelić, D. & Vranjković, A. 2008. Vegetation and climate dynamics during the early Middle Miocene from Lake Sinj (Dinaride Lake System, SE Croatia). Review of Palaeobotany and Palynology 152, 237–45.Google Scholar
Jiménez-Moreno, G., Rodriguez-Tovar, F. J., Pardo-Iguzquiza, E., Fauquette, S., Suc, J. P. & Muller, P. 2005. High-resolution palynological analysis in late early-middle Miocene core from the Pannonian Basin, Hungary: climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology 216, 7397.Google Scholar
Kirschvink, J. L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.Google Scholar
Kovar-Eder, J., Kvaček, Z. & Meller, B. 2001. Comparing Early to Middle Miocene floras and probable vegetation types of Oberdorf N Voitsberg (Austria), Bohemia (Czech Republic), and Wackersdorf (Germany). Review of Palaeobotany and Palynology 114, 83125.Google ScholarPubMed
Kroh, A. 2007. Climate changes in the Early to Middle Miocene of the Central Paratethys and the origin of its echinoderm fauna. Palaeogeography, Palaeoclimatology, Palaeoecology 253, 169207.Google Scholar
Kvaček, Z., Böhme, M., Dvořík, Z., Konzalová, M., Mach, K., Prokop, J. & Rajchl, M. 2004. Early Miocene freshwater and swamp ecosystems of the Most Basin (northern Bohemia) with particular reference to the Bílina Mine section. Journal of the Czech Geological Society 491, 140.Google Scholar
Kvaček, Z. & Teodoridis, V. 2007. Tertiary macrofloras of the Bohemian Massif: a review with correlations within Boreal and Central Europe. Bulletin of Geosciences 82, 383408.Google Scholar
Larrasoaña, J. C., Murelaga, X. & Garces, M. 2006. Magnetobiochronology of Lower Miocene (Ramblian) continental sediments from the Tudela Formation (western Ebro basin, Spain). Earth and Planetary Science Letters 243, 409–23.Google Scholar
Larsson, L. M., Dybkjær, K., Rasmussen, E. S., Piasecki, S., Utescher, T. & Vajda, V. 2011. Miocene climate evolution of northern Europe: a palynological investigation from Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 309, 161–75.Google Scholar
Laskar, J., Fienga, A., Gastineau, M. & Manche, H. 2011. La:2010: a new orbital solution for the long term motion of the Earth. Astronomy & Astrophysics 532, A89.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M. & Levrard, B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261–85.Google Scholar
Ma, W.-T., Tian, J., Li, Q.-Y. & Wang, P.-X. 2011. Simulation long-eccentricity (400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: weathering and nutrient response to orbital change. Geophysical Research Letters 38, L10701.Google Scholar
Mach, K. 2010. A new concept of palaeogeographic development of the Most basin area during Miocene, 313. In GeoDarmstadt 2010 – 8th European Coal Conference, Darmstadt, 10–13 October 2010 (eds Hoppe, A., Rohling, H. G. & Schuth, C.). SDGG Publication 68, 370 pp.Google Scholar
Mach, K., Sýkorová, I., Konzalová, M. & Opluštil, S. 2013. Effect of relative lake-level changes in mire–lake system on the petrographic and floristic compositions of a coal seam, in the Most Basin (Miocene), Czech Republic. International Journal of Coal Geology 105,120–36.Google Scholar
Mandic, O., de Leeuw, A., Vukovic, B., Krijgsman, W., Harzhauser, M. & Kuiper, K. F. 2011. Palaeoenvironmental evolution of Lake Gacko (Southern Bosnia and Herzegovina): impact of the Middle Miocene Climatic Optimum on the Dinaride Lake System. Palaeogeography, Palaeoclimatology, Palaeoecology 299, 475–92.Google Scholar
Mann, M. E. & Lees, J. M. 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33, 409–45.Google Scholar
Martinez, M., Deconinck, J.-F., Pellenard, P., Reboulet, S. & Riquier, L. 2013. Astrochronology of the Valanginian Stage from reference sections (Vocontian Basin, France) and palaeoenvironmental implications for the Weissert Event. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 91102.Google Scholar
Matys Grygar, T. & Mach, K. 2013. Regional chemostratigraphic key horizons in the macrofossil-barren siliciclastic lower Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic). Bulletin of Geosciences 88, 557–71.Google Scholar
Meier, L. P. & Kahr, G. 1999. Determination of cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ions with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals 47, 386–8.Google Scholar
Meléndez, N., Liesa, C. L., Soria, A. R. & Meléndez, A. 2009. Lacustrine system evolution during early rifting: El Castellar Formation (Galve sub-basin, Central Iberian Chain). Sedimentary Geology 222, 6477.Google Scholar
Meyers, S. R. & Sageman, B. B. 2007. Quantification of deep-time orbital forcing by average spectral misfit. American Journal of Sciences 307, 773–92.Google Scholar
Mosbrugger, V., Utescher, T. & Dilcher, D. L. 2005. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America 102, 14964–9.Google Scholar
Paulissen, W. E. & Luthi, S. M. 2011. High-frequency cyclicity in a Miocene sequence of the Vienna Basin established from high-resolution logs and robust chronostratigraphic tuning. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 313–23.Google Scholar
Pekar, S. F. & DeConto, R. M. 2006. High-resolution ice-volume estimates for the early Miocene: evidence for a dynamic ice sheet in Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 231, 101–9.Google Scholar
Peng, S. Z. & Guo, Z. T. 2001. Geochemical indicator of original eolian grain size and the implications on winter monsoon evolution. Science in China, Series D 44 (Suppl), 261–6.Google Scholar
Rajchl, M., Uličný, D., Grygar, R. & Mach, K. 2009. Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe). Basin Research 21, 269–94.Google Scholar
Robert, C. 2004. Late Quaternary variability of precipitation in Southern California and climatic implications: clay mineral evidence from the Santa Barbara Basin, ODP site 893. Quaternary Science Reviews 23, 1029–40.Google Scholar
Soria, A. R., Muñoz, A., Liesa, C. L., Luzón, A., Meléndez, A. & Meléndez, M. N. 2012. Climate-driven cyclicity in an Early Cretaceous synrift lacustrine series (Aguilon sub-basin, NE Spain). Terra Nova 24, 407–16.Google Scholar
Taner, M. T. 2000. Attributes Revisited, Technical Publication. Houston, Texas: Rock Solid Images, Inc. Available at: http://rocksolidimages.com/pdf/attrib_revisited.htm.Google Scholar
Tanner, L. H. 2010. Cyclostratigraphic record of the Triassic: a critical examination. In The Triassic Timescale (ed. Lucas, S. G.), pp. 119–37. Geological Society of London, Special Publication no. 334.Google Scholar
Teodoridis, V. 2010. The Integrated Plant Record vegetation analysis of Early Miocene assemblages from the Most Basin (Czech Republic). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 256, 303–16.Google Scholar
Teodoridis, V. & Kvaček, Z. 2006. Palaeobotanical research of the Early Miocene deposits overlying the main coal seam (Libkovice and Lom Members) in the Most Basin (Czech Republic). Bulletin of Geosciences 81, 93113.Google Scholar
Teodoridis, V., Mazouch, P., Spicer, R. A. & Uhl, D. 2011. Refining CLAMP – investigations towards improving the Climate Leaf Analysis Multivariate Program. Palaeogeography, Palaeoclimatology, Palaeoecology 299, 3948.CrossRefGoogle Scholar
Thomson, D. J. 1982. Spectrum estimation and harmonic-analysis. Proceedings of the IEEE 70, 1055–96.Google Scholar
Thomson, D. J. 1990. Quadratic-inverse spectrum estimates – applications to paleoclimatology. Philosophical Transactions of the Royal Society of London Series A – Mathematical Physical and Engineering Sciences 332, 539–97.Google Scholar
Utescher, T., Ashraf, A. R., Dreist, A., Dybkjær, K., Mossbrugger, V., Pross, J. & Wilde, V. 2012. Variability of Neogene continental climates in Northwest Europe – a detailed study based on microfloras. Turkish Journal of Earth Sciences 21, 289314.Google Scholar
Utescher, T., Böhme, M. & Mosbrugger, V. 2011. The Neogene of Eurasia: spatial gradients and temporal trends – the second synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 196201.Google Scholar
Van Vugt, N., Langereis, C. G. & Hilgen, F. J. 2001. Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits: dominant expression of eccentricity versus precession. Palaeogeography, Palaeoclimatology, Palaeoecology 172, 193205.Google Scholar
Wan, S.-M., Kürschner, W. M., Clift, P. D., Li, A.-C. & Li, T.-G. 2009. Extreme weathering/erosion during the Miocene Climatic Optimum: evidence from sediment record in the South China Sea. Geophysical Research Letters 36, L19706.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292, 686–93.Google Scholar