Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T04:25:09.244Z Has data issue: false hasContentIssue false

Susceptibility of preparasitic stages of Chordodes nobilii (Gordiida, Nematomorpha) to the fungicide carbendazim

Published online by Cambridge University Press:  07 October 2014

C.L. Achiorno*
Affiliation:
National Scientific and Technical Research Council (CONICET), Argentina
C. De Villalobos
Affiliation:
Scientific Research Commission (CIC), La Plata, Buenos Aires, Argentina Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Buenos Aires, Argentina
L. Ferrari
Affiliation:
Scientific Research Commission (CIC), La Plata, Buenos Aires, Argentina Applied Ecophysiology Program, (PRODEA-INEDES), Basic Sciences Department, National University of Luján, Luján, Buenos Aires, Argentina

Abstract

We evaluated the effect of carbendazim on non-target organisms using the parasite Chordodes nobilii as a test organism. The Gordiida act as a link between freshwater and terrestrial ecosystems; and C. nobilii, a neotropical representative species of this group, has been shown to be sensitive to other contaminants even at environmentally acceptable concentrations. The taxa susceptible to carbendazim, however, may not be adequately represented among the standard aquatic test species used in ecotoxicological risk assessment. Moreover, the autochthonous organisms in this area that could be used as bioindicators still need to be found. The aim of the present work was therefore to assess the susceptibility of the preparasitic stages of C. nobilii to noxious effects by carbendazim. The assay protocol consisted in 96- and 48-h acute exposures of early embryonic stages and larvae, respectively, to concentrations ranging from 10 to 360 μg/l. Embryonic development was not inhibited by carbendazim at any of the evaluated concentrations, but the infectivity of larvae emerging from the exposed eggs was significantly diminished. Larval survival rate was also affected at the lowest concentration assayed. Values of the mean inhibition concentration (IC50) were 7 and 11 μg/l for embryos and larvae, respectively. Compared to other freshwater organisms, C. nobilii can be considered a species moderately to highly susceptible to carbendazim. As the expected environmental concentrations of carbendazim range from 6.25 to 41.3 μg/l, C. nobilii could well be a species in danger when exposed to this fungicide.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achiorno, C.L. (2011) Influencia de perturbaciones ambientales de origen antrópico sobre el ciclo de vida de Chordodes nobilii (Gordiida, Nematomorpha). PhD thesis, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Available athttp://hdl.handle.net/10915/29625 (accessed 23 January 2014).Google Scholar
Achiorno, C., de Villalobos, C. & Ferrari, L. (2008) Toxicity of the herbicide glyphosate to Chordodes nobilii (Gordiida, Nematomorpha). Chemosphere 71, 18161822.CrossRefGoogle ScholarPubMed
Achiorno, C., de Villalobos, C. & Ferrari, L. (2009) Sensitivity of preparasitic stages of Chordodes nobilii (Gordiida, Nematomorpha) to malathion. Ecotoxicology 18, 594599.CrossRefGoogle ScholarPubMed
Achiorno, C., de Villalobos, C. & Ferrari, L. (2010) Validation test with embryonic and larval stages of Chordodes nobilii (Gordiida, Nematomorpha): Sensitivity to three reference toxicants. Chemosphere 81, 133140.CrossRefGoogle ScholarPubMed
Álvarez, O.A., Tjalling, J., Marco Redondo, E. & Kammenga, J.E. (2006) Physiological modes of action of toxic chemicals Acrobeloides nanus. Environmental Toxicology and Chemistry 25, 32303237.CrossRefGoogle ScholarPubMed
Brock, T.C.M., Arts, G.H.P., Maltby, L. & Van den Brink, P.J. (2006) Aquatic risks of pesticides, ecological protection goals, and common aims in European Union Legislation. Integrated Environmental Assessment and Management 2, 2046.CrossRefGoogle Scholar
Buchanan, I., Liang, H.C., Liu, Z., Razaviarani, V. & Rahman, Md.Z. (2010) Pesticides and herbicides. Water Environment Research 82, 15941693.CrossRefGoogle Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shotsak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 576583.CrossRefGoogle Scholar
Cochran, P.A., Kinziger, A. & Poly, W.J. (1999) Predation on horsehair worms (Phylum Nematomorpha). Journal of Freshwater Ecology 14, 211218.CrossRefGoogle Scholar
Cuppen, J.G.M., Van den Brink, P.J., Camps, E., Uil, K.F. & Brock, T.C.M. (2000) Impact of the fungicide Carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macroinvertebrates. Aquatic Toxicology 48, 233250.CrossRefGoogle ScholarPubMed
Daam, M.A., Satapornvanit, K., Van den Brink, P.J. & Nogueira, A.J.A. (2009) Sensitivity of macroinvertebrates to Carbendazim under semi-field conditions in Thailand: Implications for the use of temperate toxicity data in a tropical risk assessment of fungicides. Chemosphere 74, 11871194.CrossRefGoogle Scholar
Dang, Z. & Smit, C.E. (2008) Environmental risk limits for carbendazim. RIVM Letter report 601716014/2008. Bilthoven, The Netherlands, National Insitute for Public Health and the Environment.Google Scholar
de Villalobos, L.C. (1999) Consideraciones sobre los daños ocasionados en insectos por Nematomorfos. Revista de la Sociedad de Ciencias Morfológicas 3, 1116.Google Scholar
de Villalobos, L.C., Ribera, I. & Downie, I.S. (1999) Hairworms found in Scottish agricultural land, with descriptions of two new species of Gordionus Muller (Nematomorpha, Gordiidae). Journal of Natural History 33, 17671780.CrossRefGoogle Scholar
de Villalobos, C., Rumi, A., Núñez, V., Schmidt-Rhaesa, A. & Zanca, F. (2003) Paratenic hosts: larval survival strategy in Paragordius varius (Leidy, 1851) (Gordiida, Nematomorpha). Acta Parasitologica 48, 98102.Google Scholar
de Villalobos, C., Zanca, F. & Schmidt-Rhaesa, A. (2004) New data on South American species of Chordodes (Nematomorpha). Revista do Museu Nacional/UFRJ Brasil 62, 375386.Google Scholar
de Villalobos, C., Ortiz-Sandoval, J.J. & Habit, E. (2008) Finding of Gordius austrinus (Gordiida, Nematomorpha) in the diet of Salmo trutta (Salmoniformes) in Patagonia. Gayana (Concepción) 72, 3135. Available atwww.scielo.cl/scielo.php?script=sci_arttext&pid=s0717-65382008000100005&lng=es&tlng=.10.4067/s0717-65382008000100005" (accessed 23 january 2014).Google Scholar
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. & Robledo, C.W. (2008) InfoStat, version 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.Google Scholar
Hanelt, B. & Janovy, J.J. (1999) The life cycle of a horsehair worm, Gordius robustus (Gordioidea: Nematomorpha). Journal of Parasitology 85, 139141.CrossRefGoogle ScholarPubMed
Hanelt, B., Thomas, F. & Shmidt-Rhaesa, A. (2003) Biology of the Phylum Nematomorpha. Advances in Parasitology 59, 243305.CrossRefGoogle Scholar
Ferreira, A.L.G., Loureiro, S. & Soares, A.M.V.M. (2008) Toxicity prediction of binary combinations of cadmium, CAR and low dissolved oxygen on Daphnia magna. Aquatic Toxicology 89, 2839.CrossRefGoogle Scholar
Fleeger, J.W., Carman, K.R. & Nisbet, R.M. (2003) Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment 317, 207233.CrossRefGoogle ScholarPubMed
James, C. (2010) Global status of commercialized biotech/GM crops, 2010. ISAAA Brief No. 42. 279 pp. Ithaca, NY, USA, ISAAA.Google Scholar
Kähkönen, E. & Nordström, K. (2008) Toward a nontoxic poison: Current trends in (European Union) biocides regulation. Integrated Environmental Assessment and Management 4, 471477.CrossRefGoogle Scholar
Kinziger, A.P., Cochran, P. & Cochran, J. (2002) Additional cases of predation on horsehair worms (Phylum Nematomorpha), with a recent record for Missouri. Transactions of the Missouri Academy of Science 36, 1113.Google Scholar
Kirsch-Volders, M., Vanhauwaert, A., Eichenlaub-Ritter, U. & Decordier, I. (2003) Indirect mechanisms of genotoxicity. Toxicology Letters 140, 6374.CrossRefGoogle ScholarPubMed
Miracle, M.R., Nandini, S., Sarma, S.S.S. & Vicente, E. (2011) Endocrine disrupting effects, at different temperatures, on Moina micrura (Cladocera: Crustacea) induced by carbendazim, a fungicide. Hydrobiologia 668, 155170.CrossRefGoogle Scholar
Mnif, W., Hassine, A.I.H., Bouaziz, A., Bartegi, A., Thomas, O. & Roig, B. (2011) Effect of endocrine disruptor pesticides: A review. International Journal of Environmental Research and Public Health 8, 22652303.CrossRefGoogle ScholarPubMed
Norberg-King, T.J. (1993) A linear interpolation method for sublethal toxicity: the inhibition concentration (ICp) approach (version 2.0). Duluth, Minnesota, USA, US Environmental Protection Agency, Environmental Research Laboratory.Google Scholar
Palanikumar, L. & Kumaraguru, A.K. (2014) Toxicity, biochemical and clastogenic response of chlorpyrifos and carbendazim in milkfish Chanos chanos. International Journal of Environmental Science and Technology 11, 765774.CrossRefGoogle Scholar
Palawski, D.U. & Knowles, C.O. (1986) Toxicological studies of benomyl and Carbendazim in rainbow trout, channel catfish and bluegills. Environmental Toxicology and Chemistry 5, 10391046.CrossRefGoogle Scholar
Pérez Leiva, F. & Anastasio, M.D. (2003) Consumo de fitosanitarios en el contexto de expansión agrícola. Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina. Available athttp://www.agro.uba.ar/apuntes/no_5/agroquimicos.htm (accessed accessed 23 January 2014).Google Scholar
Ponton, F., Lebarbenchon, C., Lefébre, T., Thomas, F., Duneau, D., Marché, L., Renault, L., Hughes, D. & Biron, D. (2006) Hairworm anti-predator strategy: a study of causes and consequences. Parasitology 133, 631638.CrossRefGoogle Scholar
Ribeiro, F., Ferreira, N.C.G., Ferreira, A., Soares, A.M.V.M. & Loureiro, S. (2011) Is ultraviolet radiation a synergistic stressor in combined exposures? The case study of Daphnia magna exposure to UV and Carbendazim. Aquatic Toxicology 102, 114122.CrossRefGoogle ScholarPubMed
Ronderos, M. & de Villalobos, C. (2003) Dasyhelea necrophila Spinelli and Rodriguez 1999 (Diptera Ceratopogonidae), a new paratenic host of Paragordius varius (Leidy, 1851) (Gordiida, Nematomorpha). Acta Parasitologica 48, 218221.Google Scholar
Ruiz, V. & Figueroa, R. (2005) Primer registro de Nematomorpha Gordiida en contenidos estomacales de peces de ríos chilenos. Boletin de la Sociedad de Biologia de Concepcion 76, 5760.Google Scholar
Schmidt-Rhaesa, A. & Ehrmann, R. (2001) Horsehair worms (Nematomorpha) as parasites of praying mantids with a discussion of their life cycle. Zoologischer Anzeiger – A Journal of Comparative Zoology 240, 167179.CrossRefGoogle Scholar
SETAC (Society of Environmental Toxicology and Chemistry). (1994) Final Report Aquatic Risk Assessment and Mitigation Dialogue Group. Pensacola, Florida, SETAC Foundation for Environmental Education.Google Scholar
Slijkerman, D.M.E. (2006) Application of functional endpoints in water quality assessment. Thesis, Institute of Ecological Science, Vrije Universiteit Amsterdam, The Netherlands.Google Scholar
USEPA ECOTOX Data BankAQUIRE (Aquatic toxicity Information Retrieval) database. US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota, USA. Available athttp://www.epa.gov/ecotox. ECOTOX Database. cfpub.epa.gov/ecotox/ (accessed 23 January 2014).Google Scholar
Van den Brink, P.J., Hattink, J., Bransen, F., Van Donk, E. & Brock, T.C.M. (2000) Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquatic Toxicology 48, 251264.CrossRefGoogle Scholar
van Wijngaarden, R.P.A., Crum, S.J.H., Decraene, K., Hattink, J. & van Kammen, A. (1998) Toxicicity of derosal (active ingredient Carbendazim) to aquatic invertebrates. Chemosphere 37, 673683.CrossRefGoogle Scholar
Varela bruce, R.A. (2005) Determinación del nivel de toxicidad aguda del fungicida CAR y el herbicida 2,4 d mediante bioensayos con Galaxias maculatus. Thesis, Facultad de Recursos Naturales de la Universidad Católica de Temuco.Google Scholar
Yenjerla, M., Cox, C., Wilson, L. & Jordan, M.A. (2009) Carbendazim inhibits cancer cell proliferation by suppressing microtubule dynamics. Journal of Pharmacology and Experimental Therapeutics 328, 390398.CrossRefGoogle ScholarPubMed
Warming, T.P., Mulderij, G. & Christoffersen, K.S. (2009) Clonal variation in physiological responses of Daphnia magna to the strobilurin fungicide azoxystrobin. Environmental Toxicology and Chemistry 28, 374380.CrossRefGoogle Scholar
Weber, C.I. (Ed.) (1993) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 4th edn.Report EPA-600/4-90/027F. Cincinnati, Ohio, USA, Environmental Monitoring Systems Laboratory, US Environmental Protection Agency.Google Scholar
Zar, J.H. (1999) Biostatistical analysis. 4th edn. 662 pp. Upper Saddle River, New Jersey, Prentice Hall.Google Scholar