Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T01:26:51.142Z Has data issue: false hasContentIssue false

Quantitative trait loci mapping for traits related to the progression of wheat flag leaf senescence

Published online by Cambridge University Press:  24 September 2014

S. WANG
Affiliation:
College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
Z. LIANG
Affiliation:
College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
D. SUN*
Affiliation:
College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
F. DONG
Affiliation:
College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
W. CHEN
Affiliation:
College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
H. WANG
Affiliation:
College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
R. JING*
Affiliation:
Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
*
*To whom all correspondence should be addressed. Email: sdz64@126.com; jingrl@caas.net.cn
*To whom all correspondence should be addressed. Email: sdz64@126.com; jingrl@caas.net.cn

Summary

Delayed senescence, or stay-green, contributes to a longer grain-filling period and has been regarded as a desirable characteristic for the production of a number of crops including wheat. In the present study, in order to identify quantitative trait loci (QTLs) for traits related to the progression of wheat flag leaf senescence, green leaf area duration (GLAD) of a doubled haploid (DH) population, derived from two winter wheat varieties Hanxuan10 and Lumai14, was visually estimated under two water conditions and was recorded at 3-day intervals from 10 days after anthesis to physiological maturity using a 0–9 scale. According to GLAD, parameters related to the progression of senescence of DH lines and their parents were estimated by the Gompertz statistical model. Based on the model parameters, DH lines were categorized into three groups under drought stress and four groups under well-watered conditions. A total of 24 additive QTLs and 23 pairs of epistatic QTLs for parameters related to the progression of senescence were identified on 18 chromosomes, except for 3B, 1D and 6D. Of the QTLs detected, 14 and 10 additive QTLs were associated with the investigated traits under drought stress and well-watered conditions, respectively. Furthermore, 4, 7, 6, 2 and 2 additive QTLs for traits related to progression of senescence were clustered around the same or similar regions of chromosomes 1A, 1B, 5A, 5B and 7A, respectively. The present data provided the genetic basis for high phenotypic correlations among traits related to the progression of wheat flag leaf senescence. In addition, 17 loci were co-located or linked with previously reported QTLs regulating chlorophyll fluorescence, high-light-induced photo-oxidation, or heat stress and dark-induced senescence. The marker Xwmc336 on chromosome 1A, responsible for the onset and end times of leaf senescence, the time to maximum rate of senescence, the time to reach 75% senescence and chlorophyll content under drought stress may be helpful for marker-assisted selection breeding of wheat.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alejar, A. A., Park, T. S., Vergara, B. S. & Visperas, R. M. (1995). The effect of source-sink imbalance on rice leaf senescence and yield. In Photosynthesis: from Light to Biosphere. Proceedings of the 10th International Photosynthesis Congress, Vol. V (Ed. Mathis, P.), pp. 723726. Dordrecht, The Netherlands: Kluwer Academic Press.Google Scholar
Bänziger, M., Edmeades, G. O. & Lafitte, H. R. (1999). Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Science 39, 10351040.Google Scholar
Benbella, M. & Paulsen, G. M. (1998). Efficacy of treatments for delaying senescence of wheat leaves: II. Senescence and grain yield under field conditions. Agronomy Journal 90, 332338.Google Scholar
Boŕrell, A. K. & Douglas, A. C. L. (1996). Maintaining green leaf area in grain sorghum increases yield in a water-limited environment. In Proceedings of the Third Australian Sorghum Conference, Tamworth, 20 to 22 February 1996 (Eds Foale, M. A., Henzell, R. G. & Kniepp, J. F.), pp. 315–322. AIAS Occasional Publication 93. Melbourne, Australia: Australian Institute of Agricultural Science.Google Scholar
Borrell, A. K., Hammer, G. L. & Douglas, A. C. L. (2000 a). Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Science 40, 10261037.Google Scholar
Borrell, A. K., Hammer, G. L. & Henzell, R. G. (2000 b). Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Science 40, 10371048.Google Scholar
Buchanan-Wollaston, V. (1997). The molecular biology of leaf senescence. Journal of Experimental Botany 48, 181199.Google Scholar
Cha, K. W., Lee, Y. J., Koh, H. J., Lee, B. M., Nam, Y. W. & Paek, N. C. (2002). Isolation, characterization, and mapping of the stay green mutant in rice. Theoretical and Applied Genetics 104, 526532.Google Scholar
Chandlee, J. M. (2001). Current molecular understanding of the genetically programmed process of leaf senescence. Physiologia Plantarum 113, 18.Google Scholar
Choudhury, N. K. & Imaseki, H. (1990). Loss of photochemical functions of thylakoid membranes and photosystem-2 complex during senescence of detached barley leaves. Photosynthetica 24, 436445.Google Scholar
Evans, L. T. (1993). Crop Evolution, Adaptation and Yield. Cambridge: Cambridge University Press.Google Scholar
Gan, S. & Amasino, R. M. (1997). Making sense of senescence. Plant Physiology 113, 313319.Google Scholar
Gorny, A. G. & Garczynski, S. (2002). Genotypic and nutritional dependent variation in water use efficiency and photosynthetic activity of leaves in winter wheat. Journal of Applied Genetics 43, 145160.Google Scholar
Grover, A. (1993). How do senescing leaves lose photosynthetic activity? Current Science 64, 226234.Google Scholar
Hafsi, M., Mechmeche, W., Bouamama, L., Djekoune, A., Zaharieva, M. & Monneveux, P. (2000). Flag leaf senescence as evaluated by numerical image analysis and its relationship with yield under drought in durum wheat. Journal of Agronomy and Crop Science 185, 275280.Google Scholar
Hao, Z. F., Chang, X. P., Guo, X. J., Jing, R. L., Li, R. Z. & Jia, J. Z. (2003). QTL mapping for drought tolerance at stages of germination and seedling in wheat (Triticum aestivum L.) using a DH population. Agricultural Science in China 2, 943949.Google Scholar
Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeiffer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K. F. X., Li, D., Pan, S., Zheng, F., Hu, Q., Xia, X., Li, J., Liang, Q., Chen, J., Wicker, T., Gou, C., Kuang, H., He, G., Luo, Y., Keller, B., Xia, Q., Lu, P., Wang, J., Zou, H., Zhang, R., Xu, J., Gao, J., Middleton, C., Quan, Z., Liu, G., Wang, J., International Wheat Genome Sequencing Consortium, Yang, H., Liu, X., He, Z., Mao, L. & Wang, J. (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 9195.Google Scholar
Jiang, G. H., He, Y. Q., Xu, C. G., Li, X. H. & Zhang, Q. (2004). The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theoretical and Applied Genetics 108, 688698.CrossRefGoogle Scholar
Jing, R. L., Chang, X. P., Jia, J. Z. & Hu, R. H. (1999). Establishing wheat doubled haploid population for genetic mapping by anther culture. Biotechnology 9, 48.Google Scholar
Joshi, A. K., Kumari, M., Singh, V. P., Reddy, C. M., Kumar, S., Rane, J. & Chand, R. (2007). Stay green trait: variation, inheritance and its association with spot blotch resistance in spring wheat. Euphytica 153, 5971.Google Scholar
Kumar, U., Joshi, A. K., Kumari, M., Paliwal, R., Kumar, S. & Röder, M. S. (2010). Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ x ‘Sonalika’ population. Euphytica 174, 437445.Google Scholar
Li, H. W., Tong, Y. P., Li, B., Jing, R. L., Lu, C. M. & Li, Z. S. (2010). Genetic analysis of tolerance to photo-oxidative stress induced by high light in winter wheat (Triticum aestivum L.). Journal of Genetics and Genomics 37, 399412.Google Scholar
Li, H. W., Lin, F. Y., Wang, G., Jing, R. L., Zheng, Q., Li, B. & Li, Z. S. (2012). Quantitative trait loci mapping of dark-induced senescence in winter wheat (Triticum aestivum L.). Journal of Integrative Plant Biology 54, 3344.Google Scholar
Lu, C. M. & Zhang, J. H. (1998). Changes in photosystem II function during senescence of wheat leaves. Physiologia Plantarum 104, 239247.Google Scholar
Nakamura, M., Mochizuki, N. & Nagatani, A. (2000). Isolation and characterization of an Arabidopsis mutant, fireworks (fiw), which exhibits premature cessation of inflorescence growth and early leaf senescence. Plant and Cell Physiology 41, 94103.Google Scholar
Noodén, L. D., Guiamét, J. J. & John, I. (1997). Senescence mechanisms. Physiologia Plantarum 101, 746753.Google Scholar
Pestsova, E., Ganal, M. W. & Röder, M. S. (2000). Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43, 689697.Google Scholar
Pierce, R. O., Knowles, P. F. & Phillips, D. A. (1984). Inheritance of delayed leaf senescence in soybean. Crop Science 24, 515518.Google Scholar
Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P. & Ganal, M. W. (1998). A microsatellite map of wheat. Genetics 149, 20072023.Google Scholar
Rosenow, D. T. & Clark, L. E. (1981). Drought tolerance in sorghum. In Proceedings of the 36th Annual Corn and Sorghum Research Conference, Held at Chicago (Eds Loden, H. D. & Wilkinson, D.), pp. 18–30. Washington, DC: American Seed Trade Association.Google Scholar
Rosenow, D. T., Quisenberry, J. E., Wendt, C. W. & Clark, L. E. (1983). Drought tolerant sorghum and cotton germplasm. Agricultural Water Management 7, 207222.Google Scholar
Seber, G. A. F. & Wild, C. J. (1989). Nonlinear Regression. New York: Wiley.Google Scholar
Somers, D. J., Isaac, P. & Edwards, K. (2004). A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 109, 11051114.Google Scholar
Sourdille, P., Singh, S., Cadalen, T., Brown-Guedira, G. L., Gay, G., Qi, L., Gill, B. S., Dufour, P., Murigneux, A. & Bernard, M. (2004). Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Functional and Integrative Genomics 4, 1225.Google Scholar
Spano, G., Di Fonzo, N., Perrotta, C., Platani, C., Ronga, G., Lawlor, D. W., Napier, J. A. & Shewry, P. R. (2003). Physiological characterization of ‘stay green’ mutants in durum wheat. Journal of Experimental Botany 54, 14151420.Google Scholar
Sylvester-Bradley, R., Scott, R. K. & Wright, C. E. (1990). Physiology in the Production and Improvement of Cereals. Home-grown Cereals Authority Research Review 18. London: HGCA.Google Scholar
Thomas, H. & Howarth, C. J. (2000). Five ways to stay green. Journal of Experimental Botany 51(Suppl. 1), 329337.Google Scholar
Thomas, H. & Smart, C. M. (1993). Crops that stay green. Annals of Applied Biology 123, 193219.Google Scholar
Thomas, H., Evans, C., Thomas, H. M., Humphreys, M. W., Morgan, G., Hauck, B. & Donnison, I. (1997). Introgression, tagging and expression of a leaf senescence gene in Festulolium . New Phytologist 137, 2934.Google Scholar
Verma, V., Foulkes, M. J., Worland, A. J., Sylvester-Bradley, R., Caligari, P. D. S. & Snape, J. W. (2004). Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought stressed environments. Euphytica 135, 255263.Google Scholar
Vijayalakshmi, K., Fritz, A. K., Paulsen, G. M., Bai, G., Pandravada, S. & Gill, B. S. (2010). Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding 26, 163175.Google Scholar
Walulu, R. S., Rosenow, D. T., Wester, D. B. & Nguyen, H. T. (1994). Inheritance of the stay-green trait in sorghum. Crop Science 34, 970972.Google Scholar
Wang, D. L., Zhu, J., Li, Z. K. L. & Paterson, A. H. (1999). Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theoretical and Applied Genetics 99, 12551264.Google Scholar
Wardlaw, I. F. (2002). Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Annals of Botany 90, 469476.Google Scholar
Xu, W. W., Subudhi, P. K., Crasta, O. R., Rosenow, D. T., Mullet, J. E. & Nguyen, H. T. (2000). Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43, 461469.Google Scholar
Yang, D. L., Jing, R. L., Chang, X. P. & Li, W. (2007). Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). Journal of Integrative Plant Biology 49, 646654.Google Scholar
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.Google Scholar
Zhou, X. G., Jing, R. L., Hao, Z. F., Chang, X. P. & Zhang, Z. B. (2005). Mapping QTL for seedling root traits in common wheat. Scientia Agricultura Sinica 38, 19511957.Google Scholar