Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T20:50:19.563Z Has data issue: false hasContentIssue false

Fluorescent π-conjugated polymer nanoparticles: A new synthetic approach based on nanoagglomeration via polyion association

Published online by Cambridge University Press:  23 September 2014

Chiaki Fukui
Affiliation:
Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
Hiroshi Yao*
Affiliation:
Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
*
a)Address all correspondence to this author. e-mail: yao@sci.u-hyogo.ac.jp
Get access

Abstract

A facile method is developed to synthesize ion-based π-conjugated polymer nanoparticles. The polymer chosen is anionic poly(2-methoxy-5-propyloxysulfonate phenylene vinylene); MPS-PPV. The synthesis is based on nanoagglomeration via polyion association (termed as NAPA method) that includes polyion complex formation and subsequent globulization to fabricate nanoarchitectures in water-based liquid. Salient features include no spectral shift in the UV–vis absorption upon the nanoparticle formation, in contrast to a common observation that conjugated polymer nanoparticles made by a reprecipitation method exhibit blue shift in their peak. This behavior suggests the absence of further bending or kinking of the polymer backbone during nanoglobulization. Fluorescence peak energy is size dependent; the larger the particle size is, the lower is its fluorescence energy. This can be dominantly ascribed to the increased contribution of sole excitation of the chromophoric segments that have a long effective conjugation length. Because a small (large) particle has a large (small) surface-to-volume ratio, the blue-site (red-site) fluorescence is associated with the surface (inner) region of the polymer nanoparticles, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B.: Light-emitting diodes based on conjugated polymers. Nature 347, 539 (1990).CrossRefGoogle Scholar
Chan, W.C.W. and Nie, S.M.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016 (1998).CrossRefGoogle ScholarPubMed
Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013 (1998).CrossRefGoogle ScholarPubMed
Santra, S., Wang, K., Tapec, R., and Tan, W.: Conjugation of biomolecules with luminophore- doped silica nanoparticles for photostable biomarkers. Anal. Chem. 73, 4988 (2001).Google Scholar
Bolinger, J.C., Traub, M.C., Brazard, J., Adachi, T., Barbara, P.F., and Vanden Bout, D.A.: Conformation and energy transfer in single conjugated polymers. Acc. Chem. Res. 45, 1992 (2012).Google Scholar
Tuncel, D. and Demir, H.V.: Conjugated polymer nanoparticles. Nanoscale 2, 484 (2010).CrossRefGoogle ScholarPubMed
Landfester, K.: Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew. Chem., Int. Ed. 48, 4488 (2009).Google Scholar
Sarrazin, P., Chaussy, D., Vurth, L., Stephan, O., and Beneventi, D.: Surfactant (TTAB) role in the preparation of 2,7-poly(9,9-dialkylfluorene-co-fluorenone) nanoparticles by miniemulsion. Langmuir 25, 6745 (2009).Google Scholar
Wu, C., Szymanski, C., and McNeill, J.: Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir 22, 2956 (2006).CrossRefGoogle ScholarPubMed
Yao, H. and Enseki, T.: Size-dependent spectral linewidth narrowing of H-bands in organic nanoparticles of pentamethine cyanine dye. J. Photochem. Photobiol., A 271, 124 (2013).Google Scholar
Yao, H. and Funada, T.: Mechanically inducible fluorescence colour switching in the formation of organic nanoparticles of an ESIPT molecule. Chem. Commun. 50, 2748 (2014).Google Scholar
Yao, H. and Ashiba, K.: Highly fluorescent organic nanoparticles of thiacyanine dye: A synergetic effect of intermolecular H-aggregation and restricted intramolecular rotation. RSC Adv. 1, 834 (2011).Google Scholar
Grey, J.K., Kim, D.Y., Norris, B.C., Miller, W.L., and Barbara, P.F.: Size-dependent spectroscopic properties of conjugated polymer nanoparticles. J. Phys. Chem. B 110, 25568 (2006).Google Scholar
Ngo, A.T., Karam, P., Fuller, E., Burger, M., and Cosa, G.: Liposome encapsulation of conjugated polyelectrolytes: Toward a liposome beacon. J. Am. Chem. Soc. 130, 457 (2008).Google Scholar
Flory, P.J.: Principles of Polymer Chemistry (Cornell University, New York, 1953).Google Scholar
McQuade, D.T., Pullen, A.E., and Swager, T.M.: Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537 (2000).CrossRefGoogle ScholarPubMed
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J.: (Gaussian 09, Gaussian, Inc., Wallingford, CT, 2010).Google Scholar
MacKnight, W.J., Ponomarenko, E.A., and Tirrell, D.A.: Self-assembled polyelectrolyte-surfactant complexes in nonaqueous solvents and in the solid State. Acc. Chem. Res. 31, 781 (1998).Google Scholar
Kabanov, A.V., Bronich, T.K., Kabanov, V.A., Yu, K., and Eisenberg, A.: Spontaneous formation of vesicles from complexes of block ionomers and surfactants. J. Am. Chem. Soc. 120, 9941 (1998).Google Scholar
Kuhn, P.S., Levin, Y., and Barbosa, M.C.: Complex formation between polyelectrolytes and ionic surfactants. Chem. Phys. Lett. 298, 51 (1998).Google Scholar
Chen, L., Xu, S., McBranch, D., and Whitten, D.: Tuning the properties of conjugated polyelectrolytes through surfactant complexation. J. Am. Chem. Soc. 122, 9302 (2000).Google Scholar
Abe, S. and Chen, L.: Tuning the photophysical properties of an ionic conjugated polymer through interactions with conventional polyelectrolytes. J. Polym. Sci., Part B: Polym. Phys. 41, 1676 (2003).CrossRefGoogle Scholar
Szymanski, C., Wu, C., Hooper, J., Salazar, M.A., Perdomo, A., Dukes, A., and McNeill, J.: Single molecule nanoparticles of the conjugated polymer MEH-PPV, preparation and characterization by near-field scanning optical microscopy. J. Phys. Chem. B 109, 8543 (2005).Google Scholar
We also examined MPS-PPV polymer nanoparticles under the condition of p/w = 2, and the results (STEM image and spectroscopic data) are shown in Supplementary Material. Consequently, particle size could still be tuned by the p/w value, and thus, their fluorescence properties were reasonably size-dependent.Google Scholar
Padmanaban, G. and Ramakrishnan, S.: Conjugation length control in soluble poly[2-methoxy-5-((2’-ethylhexyl)oxy)-1,4-phenylenevinylene] (MEHPPV): Synthesis, optical properties, and energy transfer. J. Am. Chem. Soc. 122, 2244 (2000).Google Scholar
Montano, G.A., Dattelbaum, A.M., Wang, H-L., and Shreve, A.P.: Enhanced photoluminescence from poly(phenylene vinylene): Dendrimer polyelectrolyte assemblies in solution. Chem. Commun. 2490 (2004).Google Scholar
Lin, Y-H., Jiang, C., Xu, J., Lin, Z., and Tsukruk, V.V.: Robust, fluorescent, and nanoscale freestanding conjugated films. Soft Matter 3, 432 (2007).CrossRefGoogle ScholarPubMed
Tang, J., Li, W.J., Wang, Y., Wang, B., Sun, J., and Yang, B.: Layer-by-layer self-assembled multilayer film of cationic oligo-(phenylene vinylene) and polyelectrolytes based on electrostatic interaction. J. Photochem. Photobiol., A 141, 179 (2001).Google Scholar
Nguyen, T-Q., Martini, I.B., Liu, J., and Schwartz, B.J.: Controlling interchain interactions in conjugated polymers: The effects of chain morphology on exciton–exciton annihilation and aggregation in MEH−PPV films. J. Phys. Chem. B 104, 237 (2000).CrossRefGoogle Scholar
Gu, Z., Bao, Y-J., Zhang, Y., Wang, M., and Shen, Q-D.: Anionic water-soluble poly(phenylenevinylene) alternating copolymer: High-efficiency photoluminescence and dual electroluminescence. Macromolecules 39, 3125 (2006).Google Scholar
Ng, B.C., Yu, M., Gopal, A., Rome, L.H., Monbouquette, H.G., and Tolbert, S.H.: Encapsulation of semiconducting polymers in vault protein cages. Nano Lett. 8, 3503 (2008).Google Scholar
Stewart, J.J.P.: Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model 13, 1173 (2007).Google Scholar
Supplementary material: PDF

Supplementary Material

Supplementary information supplied by authors.

Download Supplementary Material(PDF)
PDF 237.2 KB