Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-27T13:54:09.327Z Has data issue: false hasContentIssue false

Normal crossing properties of complex hypersurfaces via logarithmic residues

Published online by Cambridge University Press:  25 June 2014

Michel Granger
Affiliation:
Université d’Angers, Département de Mathématiques, LAREMA, CNRS UMR 6093, 2 Bd Lavoisier, 49045 Angers, France email granger@univ-angers.fr
Mathias Schulze
Affiliation:
Department of Mathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany email mschulze@mathematik.uni-kl.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a dual logarithmic residue map for hypersurface singularities and use it to answer a question of Kyoji Saito. Our result extends a theorem of Lê and Saito by an algebraic characterization of hypersurfaces that are normal crossing in codimension one. For free divisors, we relate the latter condition to other natural conditions involving the Jacobian ideal and the normalization. This leads to an algebraic characterization of normal crossing divisors. As a side result, we describe all free divisors with Gorenstein singular locus.

Type
Research Article
Copyright
© The Author(s) 2014 

References

Aleksandrov, A. G., Nonisolated Saito singularities, Mat. Sb. (N.S.) 137(179) (1988), 554567, 576; MR 981525 (90b:32024).Google Scholar
Aleksandrov, A. G., Multidimensional residue theory and the logarithmic de Rham complex, J. Singul. 5 (2012), 118; MR 2928930.Google Scholar
Aleksandrov, A. G. and Tsikh, A. K., Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière, C. R. Acad. Sci. Paris Math. Sér. I 333 (2001), 973978; MR 1872457 (2002m:32004).CrossRefGoogle Scholar
Barlet, D., Le faisceau ω X sur un espace analytique X de dimension pure, in Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977), Lecture Notes in Mathematics, vol. 670 (Springer, Berlin, 1978), 187204; MR 521919 (80i:32037).Google Scholar
Buchweitz, R.-O. and Conca, A., New free divisors from old, J. Commut. Algebra 5 (2013), 1747; MR 3084120.Google Scholar
Bruns, W. and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39 (Cambridge University Press, Cambridge, 1993); MR 1251956 (95h:13020).Google Scholar
Damon, J. and Mond, D., A-codimension and the vanishing topology of discriminants, Invent. Math. 106 (1991), 217242; MR 1128213 (92m:58011).CrossRefGoogle Scholar
de Gregorio, I., Mond, D. and Sevenheck, C., Linear free divisors and Frobenius manifolds, Compositio. Math. 145 (2009), 13051350; MR 2551998 (2011b:32049).Google Scholar
de Jong, T. and Pfister, G., Local analytic geometry, in Advanced Lectures in Mathematics, Friedr, Basic Theory and Applications (Vieweg & Sohn, Braunschweig, 2000); MR 1760953 (2001c:32001).Google Scholar
de Jong, T. and van Straten, D., Deformations of the normalization of hypersurfaces, Math. Ann. 288 (1990), 527547; MR 1079877 (92d:32050).CrossRefGoogle Scholar
Deligne, P., Théorie de Hodge. II, Publ. Math. Inst. Hautes Études Sci. (1971), 557; MR 0498551 (58 #16653a).Google Scholar
Deligne, P., Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273302; MR 0422673 (54 #10659).Google Scholar
Deligne, P., Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles ordinaires est abélien (d’après W. Fulton), Bourbaki Seminar, vol. 1979/80, Lecture Notes in Mathematics, vol. 842 (Springer, Berlin, 1981), 110; MR 636513 (83f:14026).Google Scholar
Denham, G. and Schulze, M., Complexes, duality and Chern classes of logarithmic forms along hyperplane arrangements, in Arrangements of hyperplanes—Sapporo 2009, Advanced Studies in Pure Mathematics, vol. 62 (Mathematical Society of Japan, Tokyo, 2012), 2757; MR 2933791.Google Scholar
Dolgachev, I. V., Logarithmic sheaves attached to arrangements of hyperplanes, J. Math. Kyoto Univ. 47 (2007), 3564; MR 2359100 (2008h:14018).Google Scholar
Edelman, P. H. and Reiner, V., Not all free arrangements are K (π, 1), Bull. Amer. Math. Soc. (N.S.) 32 (1995), 6165; MR 1273396 (95g:52017).Google Scholar
Eisenbud, D., Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150 (Springer, New York, 1995); MR 1322960 (97a:13001).Google Scholar
Evans, E. G. and Griffith, P., Syzygies, London Mathematical Society Lecture Note Series, vol. 106 (Cambridge University Press, Cambridge, 1985); MR 811636 (87b:13001).Google Scholar
Faber, E., Normal crossings in local analytic geometry, PhD thesis, Universität Wien (2011).Google Scholar
Faber, E., Characterizing normal crossing hypersurfaces, Preprint (2012), arXiv:1201.6276 [math.AG].Google Scholar
Fulton, W., On the fundamental group of the complement of a node curve, Ann. of Math. (2) 111 (1980), 407409; MR 569076 (82e:14035).Google Scholar
Granger, M., Mond, D. and Schulze, M., Free divisors in prehomogeneous vector spaces, Proc. Lond. Math. Soc. (3) 102 (2011), 923950; MR 2795728.Google Scholar
Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics No. 52 (Springer, New York, 1977); MR 0463157 (57 #3116).CrossRefGoogle Scholar
Hartshorne, R., Stable reflexive sheaves, Math. Ann. 254 (1980), 121176; MR 597077 (82b:14011).CrossRefGoogle Scholar
Herzog, J. and Kunz (eds.), E., Der kanonische Modul eines Cohen–Macaulay-Rings, Lecture Notes in Mathematics, vol. 238 (Springer, Berlin, 1971); Seminar über die lokale Kohomologietheorie von Grothendieck, Universität Regensburg, Wintersemester 1970/1971; MR 0412177 (54 #304).Google Scholar
Kunz, E. and Waldi, R., Über den Derivationenmodul und das Jacobi-Ideal von Kurvensingularitäten, Math. Z. 187 (1984), 105123; MR 753425 (85j:14033).Google Scholar
, D. T. and Saito, K., The local π 1of the complement of a hypersurface with normal crossings in codimension 1 is abelian, Ark. Mat. 22 (1984), 124; MR 735874 (86a:32019).Google Scholar
Leray, J., Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III), Bull. Soc. Math. France 87 (1959), 81180; MR 0125984 (23 #A3281).CrossRefGoogle Scholar
Lipman, J., On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc. 21 (1969), 422426; MR 0237511 (38 #5793).Google Scholar
Looijenga, E. J. N., Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, vol. 77 (Cambridge University Press, Cambridge, 1984); MR 747303 (86a:32021).Google Scholar
Mather, J. N. and Yau, S. S. T., Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), 243251; MR 674404 (84c:32007).Google Scholar
Mond, D. and Pellikaan, R., Fitting ideals and multiple points of analytic mappings, in Algebraic geometry and complex analysis (Pátzcuaro, 1987), Lecture Notes in Mathematics, vol. 1414 (Springer, Berlin, 1989), 107161; MR 1042359 (91e:32035).CrossRefGoogle Scholar
Oneto, A. and Zatini, E., Jacobians and differents of projective varieties, Manuscripta Math. 58 (1987), 487495; MR 894866 (88e:14027).Google Scholar
Piene, R., Ideals associated to a desingularization, in Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Mathematics, vol. 732 (Springer, Berlin, 1979), 503517; MR 555713 (81a:14001).Google Scholar
Poincaré, H., Sur les résidus des intégrales doubles, Acta Math. 9 (1887), 321380; MR 1554721.Google Scholar
Saito, K., Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123142; MR 0294699 (45 #3767).Google Scholar
Saito, K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265291; MR 586450 (83h:32023).Google Scholar
Scheja, G., Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung, Math. Ann. 157 (1964), 7594; MR 0176466 (31 #738).Google Scholar
Terao, H., Arrangements of hyperplanes and their freeness. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 293312; MR 586451 (84i:32016a).Google Scholar
Terao, H., Free arrangements of hyperplanes and unitary reflection groups, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 389392; MR 596011 (82e:32018a).Google Scholar
van Straten, D., A note on the discriminant of a space curve, Manuscripta Math. 87 (1995), 167177; MR 1334939 (96e:32032).CrossRefGoogle Scholar