Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T14:18:12.281Z Has data issue: false hasContentIssue false

Chemometric analysis of antioxidant activity and anthocyanin content of selected wild and cultivated small fruit from Serbia

Published online by Cambridge University Press:  12 September 2014

Violeta Mitic*
Affiliation:
Univ. Nis, Fac. Sci. Math., Dep. Chem., Visegradska 33, Nis, Serbia,. violetamitic@yahoo.com
Vesna Stankov Jovanovic
Affiliation:
Univ. Nis, Fac. Sci. Math., Dep. Chem., Visegradska 33, Nis, Serbia,. violetamitic@yahoo.com
Marija Dimitrijevic
Affiliation:
Univ. Nis, Fac. Sci. Math., Dep. Chem., Visegradska 33, Nis, Serbia,. violetamitic@yahoo.com
Jelena Cvetkovic
Affiliation:
Univ. Nis, Fac. Sci. Math., Dep. Chem., Visegradska 33, Nis, Serbia,. violetamitic@yahoo.com
Strahinja Simonovic
Affiliation:
Univ. Nis, Fac. Sci. Math., Dep. Chem., Visegradska 33, Nis, Serbia,. violetamitic@yahoo.com
Snezana Nikolic Mandic
Affiliation:
Univ. Belgrade, Fac. Chem., Belgrade, Serbia
*
* Correspondence and reprints
Get access

Abstract

Introduction. The fruit types such as raspberries (Rubus idaeus), cherries (Prunus cerasus), blackberries (Rubus fructicosus), blackthorns (Prunus spinosa) and aronia (Aronia melanocarpa) are very common in Serbia. These fruit species are a valuable source of antioxidants. The goal of our work was to evaluate the antioxidant activities of ethyl acetate extracts of these five berries and to establish possible correlation between the content of anthocyanin and the antioxidant activity. Materials and methods. To determine antioxidant activity of the selected fruits, the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, the ABTS (2,2-azinobis-3 ethyl benzothiazoline-6-sulfonic acid) cation decolorization activity, the FRAP (ferric reducing antioxidant power), and the TRP (total reducing power) were measured. Results. The four methods selected for our assays showed strong antioxidant properties for blackberry samples. The total anthocyanin content was estimated using the pH differential method. The highest amount of anthocyanin was found in blackberry samples [(1063.53 ± 0.01) mg·kg–1 fresh fruit], while the lowest was in raspberry samples [(180.84 ± 0.02) mg·kg–1 fresh fruit]. The correlation between the content of anthocyanin and antioxidant activity was established using regression analysis. The highest correlation was found between total reducing power and total anthocyanin (r = 0.97, p < 0.05). Hierarchical cluster analysis divided selected fruit species into two statistically significant clusters. Conclusion. Our results confirmed that analyzed berries are rich in anthocyanins. A strong correlation among different assays as well as with anthocyanin content was observed. Cluster analysis can be used in food science, to classify different food types into groups, based on similarity among the results.

Type
Original article
Copyright
© 2014 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Saha, M.N., Alam, M.A., Aktar, R., Jahangir, R., In vitro free radical scavenging activity of Ixora coccinea L., Bangladesh J. Pharmacol. 3 (2008) 9096. CrossRefGoogle Scholar
Shi H., Noguchi N., Niki E., Introducing natural antioxidants, in: Pokorny J., Yanishlieva N., Gordon M. (Eds.), Antioxidants in food, Practical applications, Woodhead Publ., Camb., U.K., 2001.
Vaya, J., Aviram, M., Nutritional antioxidants: mechanism of action, analyses of activities and medical applications, Curr. Med. Chem.: Immunol. Endocr. & Metab. Agents 1 (2009) 99117.Google Scholar
Kaur, C., Kapoor, H.C., Antioxidants in fruits and vegetables – the millennium’s health, J. Food Sci. Technol. 36 (2001) 703725.CrossRefGoogle Scholar
Rice-Evans, C.A., Miller, N.J., Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acid, Free Radic. Biol. Med. 20 (1996) 933956.CrossRefGoogle Scholar
Gordon, A., Friedrich, M., Da Matta, V.M., Herbster Moura, C.F., Marx, F., Changes in phenolic composition, ascorbic acid and antioxidant capacity in cashew apple (Anacardium occidentale L.) during ripening, Fruits 67 (2012) 267-276.CrossRefGoogle Scholar
Meyers, K.J., Watkins, C.B., Pritts, M.P., Liu, R.H., Antioxidant and antiproliferative activities of strawberries, J. Agric. Food Chem. 51 (2003) 68876892.CrossRefGoogle ScholarPubMed
Benvenuti, S., Pellati, F., Melegari, M., Bertelli, D., Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia, J. Food Sci. 69 (2004) 164169.Google Scholar
Hegedus, A., Balogh, E., Engel, R., Sipos, B.Z., Papp, J., Blazovics, A., Stefanovits-Bányai, E., Comparative nutrient element and antioxidant characterization of berry fruit species and cultivars grown in Hungary, HortScience 43 (2008) 17111715.Google Scholar
Garzon, G.A., Riedl, K.M., Schwartz, S.J., Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes berry (Rubus glaucus Benth.), J. Food Sci. 74 (2009) 227232.CrossRefGoogle Scholar
Nour, V., Trandafir, I., Ionica, M.E., Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars, Fruits 66 (2011) 353362.CrossRefGoogle Scholar
Katsube, N., Iwashita, K., Tsushida, T., Yamaki, K., Kobori, M., Induction of apoptosis in cancer cells by bilberry ( Vaccinium myrtillus) and the anthocyanins, J. Agric. Food Chem. 51 (2003) 6875.CrossRefGoogle ScholarPubMed
Garzon, G.A., Riedl, K.M., Schwartz, S.J., Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes berry (Rubus glaucus Benth.), J. Food Sci. 74 (2009) C227C232.CrossRefGoogle Scholar
Kammerer, D.R., Schillmoller, S., Maier, O., Schieber, A., Carle, R., Colour stability of canned strawberries using black carrot and elderberry juice concentrates as natural colourants, Eur. Food Res. Technol. 224 (2007) 667679.CrossRefGoogle Scholar
Beekwilder, J., Jonker, H., Meesters, P., Hall, R.D., van der Meer, I.M., de Vos, C.H.R., Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites, J. Agric. Food Chem. 53 (2005) 33133320.CrossRefGoogle ScholarPubMed
Meyers, K.J., Watkins, C.B., Pritts, M.P., Liu, R.H., Antioxidant and antiproliferative activities of strawberries, J. Agric. Food Chem. 51 (2003) 68876892.CrossRefGoogle ScholarPubMed
Wattenberg, L.W., Inhibition of carcinogenesis by minor dietary constituents, Cancer Res. 52 (1992) 20852091.Google ScholarPubMed
Duthie, G.G., Gardner, P.Y., Kyle, J.A.M., Plant polyphenols: Are they the new magic bullet?, Proc. Nutr. Soc. 62 (2003) 599603.CrossRefGoogle ScholarPubMed
Dai, Q., Borenstein, A.R., Wu, Y., Jackson, J.C., Larson, E.B., Fruit and vegetable juices and Alzheimer's disease: The Kame Project, Am. J. Med. 119 (2006) 751759.CrossRefGoogle ScholarPubMed
Määttä-Riihinen, K.R., Kamal-Eldin, A., Mattila, P.H., González-Paramás, A.M., Törrönen, A.R., Distribution and content of phenolic compounds in eighteen scandinavian berry species, J. Agric. Food Chem. 52 (2004) 44774486.CrossRefGoogle Scholar
Giusti M.M., Wrolstad R.E., Anthocyanins: characterization and measurement with UV-visible spectroscopy, in: Wrolstald R.E. (Ed.), Current protocols in food analytical chemistry, John Wiley & Sons, N.Y., U.S.A., 2001.
Cherif, J.K., M’Rabet, I., El Habiri, M., Abidi, R., Albrecht-Gary, A.M., Mesure de l’activité antiradicalaire du jus et des peaux d’oranges tunisiennes par le radical DPPH, Fruits 61 (2006) 99107.CrossRefGoogle Scholar
Re, R., Pellegrini, N., Proreggente, A., Pannala, A., Yang, M., Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 12311237. CrossRefGoogle ScholarPubMed
Lim, Y.S., Lee, S.S.H., Tan, B.C., Antioxidant capacity and antibacterial activity of different parts of mangosteen (Garcinia mangostana Linn.) extracts, Fruits 68 (2013) 483489. Google Scholar
Oyaizu, M., Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine, Jpn. J. Nutr. 44 (1986) 307315. CrossRefGoogle Scholar
Chaieb, N., González, J.L., López-Mesas, M., Bouslama, M., Valiente, M., Polyphenols content and antioxidant capacity of thirteen faba bean (Vicia faba L.) genotypes cultivated in Tunisia, Food Res. Int. 44 (2011) 970977. CrossRefGoogle Scholar
Tomsone, L., Kruma, Z., Alsina, I., The application of hierarchical cluster analysis for classifying horseradish genotypes (Armoracia rusticana L.) roots, Chem. Technol. 4 (2012) 5256. Google Scholar
Wang, S.Y., Lin, H.S., Antioxidant activity in fruit and leaves of blackberry, raspberry and strawberry varies with cultivar and develop-mental stage, J. Agric. Food Chem. 48 (2000) 140146.CrossRefGoogle Scholar
Pantelidis, G.E., Vasilakakis, M., Manganaris, G.A., Diamantidis, G., Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries, Food Chem. 102 (2007) 777783.CrossRefGoogle Scholar
Lee, J., Durst, R.W., Wrolstad, R.E., Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study, J. AOAC Int. 88 (2005) 12691278.Google Scholar
Sarma, A.D., Sharma, R., Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage, Phytochem. 52 (1999) 13131318.CrossRefGoogle Scholar
Tsuda, T., Horio, F., Osawa, T., The role of anthocyanins as an antioxidant under oxidative stress in rats, BioFactors 13 (2000) 133139.CrossRefGoogle ScholarPubMed
Wang, G.P., Cahill, S.M., Liu, X., Girvin, M.E., Grubmeyer, C., Motional dynamics of the catalytic loop in OMP synthase, Biochem. 38 (1999) 284295.CrossRefGoogle ScholarPubMed
Tumbas, V.T., Mandić, A.I., Ćetković, G.S., Đilas, S.M., Čanadanović-Brunet, J.M., HPLC analysis of phenolic acids in mountain germander (Teucrium montanum L.) extracts, APTEFF 35 (2004) 1280.Google Scholar
Fernández de Simón, B., Pérez-Ilzarbe, J., Hernández, T., Gómez-Cordovés, C., Estrella, I., HPLC study of the efficiency of extraction of phenolic compounds, Chromatogr. 30 (1990) 3537.CrossRefGoogle Scholar
Soobrattee,, M.A., Neergheen, V.S., Luximon-Ramma, A., Aruoma, O.I., Bahorun, T., Phenolics as potential antioxidant therapeutic agents: mechanism and actions, Mutat. Res. 579 (2005) 200213. CrossRefGoogle Scholar
Stratil, P., Klejdus, B., Kubáň, V., Determination of phenolic compounds and their antioxidant activity in fruits and cereals, Talanta 71 (2007) 17411751.CrossRefGoogle ScholarPubMed
Wootton-Bearda, P.C., Morana, A., Ryan, L., Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods, Food Res. Int. 44 (2011) 217224.CrossRefGoogle Scholar
Wu, X., Beecher, R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E., Prior, R.L., Lipophilic and hydrophilic antioxidant capacities of common foods in the United States, J. Agric. Food Chem. 52 (2004) 40264037.CrossRefGoogle ScholarPubMed
Prior, R.L., Wu, X., Schaich, K., Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements, J. Agric. Food Chem. 53 (2005) 42904302.CrossRefGoogle ScholarPubMed
Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J.A.J., Deemer, E.K., Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study, J. Agric. Food Chem. 50 (2002) 31223128. CrossRefGoogle ScholarPubMed
Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., Brighenti, F., Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays, J. Nutr. 133 (2003) 28122819. Google ScholarPubMed
Rice-Evans, C.A., Miller, N.J., Bolwell, P.G., Bramley, P.M., Pridham, J.B., The relative antioxidant activities of plant-derived polyphenolic flavonoids, Free Radic. Res. 22 (1995) 375383.CrossRefGoogle Scholar
Takahata, Y., Kai, Y., Tanaka, M., Nakayama, H., Yoshinaga, M., Enlargement of the variances in amount and composition of anthocyanin pigments in sweet potato storage roots and their effect on the differences in DPPH radical-scavenging activity, Sci. Hortic. 2011 127 (4) 469474.CrossRefGoogle Scholar
Cho, M.J., Howard, L.R., Prior, R.L., Clark, J.R., Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry, J. Sci. Food Agric. 84 (2004) 17711782.CrossRefGoogle Scholar