Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T20:51:22.858Z Has data issue: false hasContentIssue false

Glass fiber–supported NiO nanofiber webs for reduction of CO and hydrocarbon emissions from diesel engine exhaust

Published online by Cambridge University Press:  12 September 2014

Gibin George
Affiliation:
Department of Metallurgical and Materials Engineering, National Institute of Technology-Karnataka, Mangalore 575025, India
Srinivasan Anandhan*
Affiliation:
Department of Metallurgical and Materials Engineering, National Institute of Technology-Karnataka, Mangalore 575025, India
*
a)Address all correspondence to this author. e-mail: anandtmg@gmail.com, anandhan@nitk.edu.in
Get access

Abstract

In this study, nickel acetate tetrahydrate (NACTH)/poly(styrene-co-acrylonitrile) (SAN) sol was used for the fabrication of nanocrystalline NiO nanofibers. An indigenous setup was developed to use these nanofibers for the oxidation of carbon monoxide (CO) and unburnt hydrocarbons (HC) from diesel engine exhaust. The morphological, compositional, and crystalline properties of the NiO nanofibers obtained after calcination were studied by scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and x-ray diffraction (XRD). Clear evidence of defects in the fibers was observed in ultraviolet–visible–near infrared (UV-Vis-NIR) spectra, Raman spectra, and magnetic property measurements. The NiO nanofiber mats supported by glass fiber mats were efficient in oxidizing CO and HC from diesel engine exhaust, and the maximum efficiency was achieved by using NiO nanofibers with the maximum amount of defects.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dai, Y., Liu, W., Formo, E., Sun, Y., and Xia, Y.: Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 22, 326338 (2011).CrossRefGoogle Scholar
He, J.H., Hsin, C.L., Liu, J., Chen, L.J., and Wang, Z.L.: Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater. 19, 781784 (2007).CrossRefGoogle Scholar
Liu, H., Yang, J., Liang, J., Huang, Y., and Tang, C.: ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. J. Am. Ceram. Soc. 91, 12871291 (2008).CrossRefGoogle Scholar
Park, J.Y. and Kim, S.S.: Growth of nanograins in electrospun ZnO nanofibers. J. Am. Ceram. Soc. 92, 16911694 (2009).CrossRefGoogle Scholar
Stafiniak, A., Boratyński, B., Baranowska-Korczyc, A., Szyszka, A., Ramiączek-Krasowska, M., Prażmowska, J., Fronc, K., Elbaum, D., Paszkiewicz, R., and Tłaczała, M.: A novel electrospun ZnO nanofibers biosensor fabrication. Sens. Actuators, B 160, 14131418 (2011).CrossRefGoogle Scholar
Park, J-Y., Choi, K-I., Lee, J-H., Hwang, C-H., Choi, D-Y., and Lee, J-W.: Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions. Mater. Lett. 97, 6466 (2013).CrossRefGoogle Scholar
Park, J-Y., Yun, J-J., Hwang, C-H., and Lee, I-H.: Influence of silver doping on the phase transformation and crystallite growth of electrospun TiO2 nanofibers. Mater. Lett. 64, 26922695 (2010).CrossRefGoogle Scholar
Shengyuan, Y., Nair, A.S., Jose, R., and Ramakrishna, S.: Electrospun TiO2 nanorods assembly sensitized by CdS quantum dots: A low-cost photovoltaic material. Energy Environ. Sci. 3, 20102014 (2010).CrossRefGoogle Scholar
Azad, A-M.: Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater. Sci. Eng., A 435436, 468473 (2006).CrossRefGoogle Scholar
Li, W., Li, C., Zhu, L., Feng, C., Chen, W., Guo, W., and Ruan, S.: Preparation and NO2 sensing properties of the ni-doped In2O3 nanofibers. Integr. Ferroelectr. 138, 7176 (2012).CrossRefGoogle Scholar
Cho, N.G., Yang, D.J., Jin, M-J., Kim, H-G., Tuller, H.L., and Kim, I-D.: Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sens. Actuators, B 160, 14681472 (2011).CrossRefGoogle Scholar
Choi, S-W., Park, J.Y., and Kim, S.S.: Growth kinetics of nanograins in Co3O4 fibers. Ceram. Int. 37, 427430 (2011).CrossRefGoogle Scholar
El Shobaky, G., Gravelle, P.C., and Teichner, S.J.: Influence of the surface structure of a nickel oxide catalyst on the mechanism of the room-temperature oxidation of carbon monoxide. J. Catal. 14, 422 (1969).CrossRefGoogle Scholar
Conner, W.C. and Bennett, C.O.: Carbon monoxide oxidation on nickel oxide. J. Catal. 41, 3039 (1976).CrossRefGoogle Scholar
Parravano, G.: The catalytic oxidation of carbon monoxide on nickel oxide. I. Pure nickel oxide. J. Am. Chem. Soc. 75, 14481451 (1953).CrossRefGoogle Scholar
Parravano, G.: The catalytic oxidation of carbon monoxide on nickel oxide. II. Nickel oxide containing foreign ions. J. Am. Chem. Soc. 75, 14521454 (1953).CrossRefGoogle Scholar
Keyer, N.P., Semin, G.L., and Bunina, R.V.: Mechanism of carbon monoxide oxidation on nickel oxide and its solid solutions. React. Kinet. Catal. Lett. 7, 315319 (1977).CrossRefGoogle Scholar
D’Souza, L. and Richards, R.: Synthesis of metal-oxide nanoparticles: Liquid–solid transformations. In Synthesis, Properties, and Applications of Oxide Nanomaterials, Rodríguez, J.A. and Fernández-García, M. ed.; John Wiley & Sons, Inc: New Jersey, 2006; pp. 81117.Google Scholar
Liu, L., Zhang, Y., Wang, G., Li, S., Wang, L., Han, Y., Jiang, X., and Wei, A.: High toluene sensing properties of NiO–SnO2 composite nanofiber sensors operating at 330 °C. Sens. Actuators, B 160, 448454 (2011).CrossRefGoogle Scholar
Vijayakumar, S., Nagamuthu, S., and Muralidharan, G.: Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 21882196 (2013).CrossRefGoogle ScholarPubMed
Aravindan, V., Suresh Kumar, P., Sundaramurthy, J., Ling, W.C., Ramakrishna, S., and Madhavi, S.: Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. J. Power Sources 227, 284290 (2013).CrossRefGoogle Scholar
Purushothaman, K.K. and Muralidharan, G.: Nanostructured NiO based all solid state electrochromic device. J. Sol-Gel Sci. Technol. 46, 190194 (2008).CrossRefGoogle Scholar
Thota, S. and Kumar, J.: Sol–gel synthesis and anomalous magnetic behaviour of NiO nanoparticles. J. Phys. Chem. Solids 68, 19511964 (2007).CrossRefGoogle Scholar
Pei, C.C. and Leung, W.W-F.: Enhanced photocatalytic activity of electrospun TiO2/ZnO nanofibers with optimal anatase/rutile ratio. Catal. Commun. 37, 100104 (2013).CrossRefGoogle Scholar
Marras, G., Artal, M., Otin, S., and Marongiu, B.: Calorimetric study of nitrile-carbonyl group interactions. Comparison with DISQUAC predictions. Fluid Phase Equilib. 98, 149162 (1994).CrossRefGoogle Scholar
Senthil, T. and Anandhan, S.: Fabrication of styrene–acrylonitrile random copolymer nanofiber membranes from N,N-dimethyl formamide by electrospinning. J. Elastomers Plast. (2013), doi: 10.1177/0095244313514987.Google Scholar
http://imagej.nih.gov/ij/ (accessed on 01 March, 2014).Google Scholar
Woo, D-H., Lee, H-G., and Jung, I-H.: Thermodynamic modeling of the NiO–SiO2, MgO–NiO, CaO–NiO–SiO2, MgO–NiO–SiO2, CaO–MgO–NiO and CaO–MgO–NiO–SiO2 systems. J. Eur. Ceram. Soc. 31, 4359 (2011).CrossRefGoogle Scholar
Yener, F. and Jirsak, O.: Comparison between the needle and roller electrospinning of polyvinylbutyral. J. Nanomater 2012, 16 (2012) doi: 10.1155/2012/839317.CrossRefGoogle Scholar
Scheirs, J.: Practical Polymer Analysis: Techniques and Strategies for the Compositional and Failure Analysis of Polymers, Elastomers and Composites (Wiley, New York, 2000).Google Scholar
De Jesus, J.C., González, I., Quevedo, A., and Puerta, T.: Thermal decomposition of nickel acetate tetrahydrate: An integrated study by TGA, QMS and XPS techniques. J. Mol. Catal. A: Chem. 228, 283291 (2005).CrossRefGoogle Scholar
Mistry, B.D.: A Handbook of Spectroscopic Data: Chemistry - UV, IR, PMR, CNMR and Mass Spectroscopy (Oxford Book Co., Jaipur, 2009).Google Scholar
Platero, E.E., Spoto, G., Coluccia, S., and Zecchina, A.: IR and UV-vis-NIR spectra of oxygen adsorbed at low temperature on nickel monoxide. Langmuir 3, 291297 (1987).CrossRefGoogle Scholar
Dong, T., Suk, H., and Hosun, H.: Optical properties of black NiO and CoO single crystals studied with spectroscopic ellipsometry. J. Korean Phys. Soc. 50, 632 (2007).CrossRefGoogle Scholar
Zak, A.K., Abd Majid, W.H., Abrishami, M.E., and Yousefi, R.: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251256 (2011).Google Scholar
Qi, Y., Qi, H., Li, J., and Lu, C.: Synthesis, microstructures and UV-vis absorption properties of β-Ni(OH)2 nanoplates and NiO nanostructures. J. Cryst. Growth 310, 42214225 (2008).CrossRefGoogle Scholar
Gleiter, H.: Nanostructured materials. Adv. Mater. 4, 474481 (1992).CrossRefGoogle Scholar
George, G. and Anandhan, S.: Structural characterization of nano-crystalline Co3O4 ultra-fine fibers obtained by sol–gel electrospinning. J. Sol-Gel Sci. Technol. 67, 256266 (2013).CrossRefGoogle Scholar
Iida, Y.: Sintering of high-purity nickel oxide. J. Am. Ceram. Soc. 41, 397406 (1958).CrossRefGoogle Scholar
Choi, S-W., Park, J.Y., and Kim, S.S.: Growth behavior of nanograins in NiO fibers. Mater. Chem. Phys. 127, 1620 (2011).CrossRefGoogle Scholar
Zhang, S., Ogale, S.B., Yu, W., Gao, X., Liu, T., Ghosh, S., Das, G.P., Wee, A.T.S., Greene, R.L., and Venkatesan, T.: Electronic manifestation of cation-vacancy-induced magnetic moments in a transparent oxide semiconductor: Anatase Nb:TiO2. Adv. Mater. 21, 22822287 (2009).CrossRefGoogle Scholar
Zhang, W-B., Yu, N., Yu, W-Y., and Tang, B-Y.: Stability and magnetism of vacancy in NiO: A GGA+U study. Eur. Phys. J. B 64, 153158 (2008).CrossRefGoogle Scholar
Mironova-Ulmane, N., Kuzmin, A., Steins, I., Grabis, J., Sildos, I., and Pärs, M.: Raman scattering in nanosized nickel oxide NiO. J. Phys.: Conf. Ser. 93, 012039 (2007).Google Scholar
Wipf, H., Klein, M.V., and Williams, W.S.: Vacancy-induced and two-phonon raman scattering in ZrCx, NbCx, HfCx, and TaCx , Phys. Status Solidi B 108, 489500 (1981).CrossRefGoogle Scholar
Mironova-Ulmane, N., Kuzmin, A., Grabis, J., Sildos, I., Voronin, V.I., Berger, I.F., and Kazantsev, V.A.: Structural and magnetic properties of nickel oxide nanopowders. Solid State Phenom. 168169, 341344 (2010).CrossRefGoogle Scholar
Bazhenov, A.V., Maksimov, A.A., Pronin, D.A., Tartakovskii, I.I., and Timofeev, V.B.: Influence of oxygen concentration on the two-magnon light scattering spectra in YBa2Cu3O6+x single crystals. Phys. C 169, 381385 (1990).CrossRefGoogle Scholar
Choudhury, B., Dey, M., and Choudhury, A.: Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano. Lett. 3, 18 (2013).CrossRefGoogle Scholar
Boubaker, K.: A physical explanation to the controversial Urbach tailing universality. Eur. Phys. J. Plus 126, 14 (2011).CrossRefGoogle Scholar
Gandhi, H.S., Graham, G.W., and McCabe, R.W.: Automotive exhaust catalysis. J. Catal. 216, 433442 (2003).CrossRefGoogle Scholar
Shelef, M. and McCabe, R.W.: Twenty-five years after introduction of automotive catalysts: What next?. Catal. Today 62, 3550 (2000).CrossRefGoogle Scholar