Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T11:16:31.326Z Has data issue: false hasContentIssue false

Actions of discrete groups on stationary Lorentz manifolds

Published online by Cambridge University Press:  05 June 2013

PAOLO PICCIONE
Affiliation:
Departamento de Matemática, Universidade de São Paulo, Rua do Matão 1010, 05508-900, São Paulo, SP, Brazil email piccione@ime.usp.br
ABDELGHANI ZEGHIB
Affiliation:
Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon, 46, Allée d’Italie, 69364 Lyon Cedex 07, France email abdelghani.zeghib@ens-lyon.fr

Abstract

We study the geometry of compact Lorentzian manifolds that admit a somewhere timelike Killing vector field, and whose isometry group has infinitely many connected components. Up to a finite cover, such manifolds are products (or amalgamated products) of a flat Lorentzian torus and a compact Riemannian (respectively, lightlike) manifold.

Type
Research Article
Copyright
© Cambridge University Press, 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, S. and Stuck, G.. The isometry group of a compact Lorentz manifold. I. Invent. Math. 129 (2) (1997), 239261.CrossRefGoogle Scholar
Adams, S. and Stuck, G.. The isometry group of a compact Lorentz manifold. II. Invent. Math. 129 (2) (1997), 263287.Google Scholar
Alperin, R. C.. An elementary account of Selberg’s lemma. Enseign. Math. (2) 33 (3–4) (1987), 269273.Google Scholar
Bader, U., Frances, C. and Melnick, K.. An embedding theorem for automorphism groups of Cartan geometries. Geom. Funct. Anal. 19 (2) (2009), 333355.CrossRefGoogle Scholar
Beem, J. K., Ehrlich, P. E. and Markvorsen, S.. Timelike isometries and Killing fields. Geom. Dedicata 26 (3) (1988), 247258.CrossRefGoogle Scholar
Bertin, M. J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M. and Schreiber, J. P.. Pisot and Salem Numbers. Birkhäuser, Basel, 1992.Google Scholar
D’Ambra, G.. Isometry groups of Lorentz manifolds. Invent. Math. 92 (3) (1988), 555565.CrossRefGoogle Scholar
Flores, J. L., Javaloyes, M. A. and Piccione, P.. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Math. Z. 267 (1–2) (2011), 221233.CrossRefGoogle Scholar
Hochschild, G.. The Structure of Lie Groups. Holden-Day, San Francisco, 1965.Google Scholar
Kobayashi, S.. Transformation Groups in Differential Geometry (Classics in Mathematics). Springer, Berlin, 1995, reprint of the 1972 edition.Google Scholar
Medina, A. and Revoy, P.. Les groupes oscillateurs et leurs réseaux. Manuscripta Math. 52 (1–3) (1985), 8195.Google Scholar
O’Neill, B.. Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.Google Scholar
Palis, J. and de Melo, W.. Geometric Theory of Dynamical Systems. Springer, New York, 1982.Google Scholar
Rosenlicht, M.. A remark on quotient spaces. An. Acad. Brasil. Ciênc. 35 (1963), 487489.Google Scholar
Thurston, W.. Three-dimensional Geometry and Topology (Princeton Mathematical Series, 35). Princeton University Press, Princeton, NJ, 1997.Google Scholar
Zeghib, A.. Sur les espaces-temps homogènes. The Epstein Birthday Schrift (Geometry & Topology Monographs, 1). Geometry and Topology Publishing, Coventry, 1998, pp. 551576; electronic.CrossRefGoogle Scholar
Zeghib, A.. Isometry groups and geodesic foliations of Lorentz manifolds, Part I: Foundations of Lorentz dynamics. Geom. Funct. Anal. 9 (1999), 775822.Google Scholar
Zimmer, R. J.. Ergodic Theory and Semisimple Groups (Monographs in Mathematics, 81). Birkhäuser, Basel, 1984.CrossRefGoogle Scholar