Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T19:41:36.726Z Has data issue: false hasContentIssue false

Chemical doping tunes the half-metallic properties of AlN nanoribbons

Published online by Cambridge University Press:  22 August 2014

Alejandro Lopez-Bezanilla*
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, United States
Get access

Abstract

Spin-polarized first-principles calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag aluminium nitride (AlN) nanoribbons. Chemical functionalization with O atoms at the edges strengthens the half-metallic properties of the AlN by adding new electronic states at the Fermi level for one spin-channel and widening the gap of the other. On the contrary, edge-termination with S atoms renders the AlN ribbon a semiconductor. Peierls instabilities towards the dimerization and trimerization of the doping atoms were observed.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Topsakal, M.; Ciraci, S. Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study, Phys. Rev. B 81, 024107 10.1103/PhysRevB.81.024107CrossRefGoogle Scholar
Lopez-Bezanilla, A.; Ganesh, P.; Kent, Paul R. C.; Sumpter, B.G. Spin-resolved self-doping tunes the intrinsic half-metallicity of AlN nanoribbons, Nano Research, 2014, 7(1), pp 6370 10.1007/s12274-013-0371-1CrossRefGoogle Scholar
Wolf, S. A.; Awschalom, D. D.; Buhrman, R.A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 14881495.10.1126/science.1065389CrossRefGoogle ScholarPubMed
Zeng, H. ; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D. “White graphene”: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping, Nano Lett., 2010, 10(12), pp 50495055 10.1021/nl103251mCrossRefGoogle Scholar
(a) Soler, J.; Artacho, E.; Gale, J.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. J. Phys.: Condens. Matter 2002, 14, 2745–2779. (b) Ordejon, P.; Artacho, E.; Soler, J. Phys. Rev. B 1996, 53, 10441–10444.Google Scholar
Lopez-Bezanilla, A.; Huang, J. ; Terrones, H. ; Sumpter, B.G., Boron Nitride Nanoribbons Become Metallic, Nano Lett. 2011, 11 (8) pp 32673273 10.1021/nl201616hCrossRefGoogle ScholarPubMed
Lopez-Bezanilla, A.; Huang, J. ; Kent, Paul R. C.; Sumpter, B.G., Tuning from Half-Metallic to Semiconducting Behavior in SiC Nanoribbons, J. of Phys. Chem. C, 2013, 117 (29) pp 1544715455 Google Scholar