Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-27T13:30:44.452Z Has data issue: false hasContentIssue false

Palaeoenvironmental changes at Col des Tribes (Montagne Noire, France), a reference section for the Famennian of north Gondwana-related areas

Published online by Cambridge University Press:  25 November 2013

CATHERINE GIRARD*
Affiliation:
Université Montpellier 2, UMR 5554 CNRS, Institut des Sciences de l'Evolution C.C. 64, Place Eugène Bataillon, F-34095 Montpellier, France
JEAN-JACQUES CORNÉE
Affiliation:
Université Montpellier 2, UMR 5243 CNRS, Géosciences Montpellier C.C. 60, Place Eugène Bataillon, F-34095 Montpellier, France
CARLO CORRADINI
Affiliation:
Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Via Trentino 51, I-09127 Cagliari, Italy
AURÉLIEN FRAVALO
Affiliation:
Université Montpellier 2, UMR 5554 CNRS, Institut des Sciences de l'Evolution C.C. 64, Place Eugène Bataillon, F-34095 Montpellier, France
RAIMUND FEIST
Affiliation:
Université Montpellier 2, UMR 5554 CNRS, Institut des Sciences de l'Evolution C.C. 64, Place Eugène Bataillon, F-34095 Montpellier, France
*
Author for correspondence: catherine.girard@univ-montp2.fr

Abstract

We present detailed biostratigraphy based on conodonts and palaeoenvironmental trends deduced from microfacies and conodont abundance through the Famennian (Late Devonian) at Col des Tribes (Montagne Noire, France). The succession is characterized by micritic limestones deposited in settings oscillating between mid to outer ramp. Facies contain poor fauna, widely dominated by nektonic organisms. This section is complete and one of the most conodont-rich for the Famennian of the north Gondwana-related area. The Upper Kellwasser event (Frasnian–Famennian boundary) and the Hangenberg (Devonian–Carboniferous boundary) have been lithologically identified. They are characterized by decimetre-thick black dysoxic to anoxic argillaceous sediments. The Condroz and annulata events, although not materialized by lithological changes, have been positioned due to the precise stratigraphy. The first event occurred during the deposition of condensed ferruginous facies (griotte limestones) and the second event during the deposition of micrites barren of benthic fauna. The combination of information from both facies and conodont biofacies changes allows a general sea-level curve through the entire Famennian for north Gondwana to be proposed for the first time. At Col des Tribes, the general trend is a slight deepening upwards from triangularis to trachytera zones, then a pronounced shallowing-upwards trend from upper trachytera to praesulcata zones. This curve correlates with the well-known reference curve from Euramerica concerning the late Famennian (trachytera to praesulcata Zones). There are some discrepancies in minor cycles which can be explained by tectonical phenomena at the onset of the edification of the Variscan belt in Europe.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseev, A. S., Kononova, L. I. & Nikishin, A. M. 1996. The Devonian and Carboniferous of the Moscow Syneclise (Russian Platform): stratigraphy and sea-level changes. Tectonophysics 268, 149–68.Google Scholar
Arthaud, F. 1970. Etude tectonique et microtectonique de deux domaines hercyniens: les nappes de la Montagne Noire (France) et l'anticlinorium de l'Iglesiente (Sardaigne). USTELA, Série Géologie Structurale 1, 1175.Google Scholar
Arthur, M. A. & Sageman, B. B. 2005. Sea-level control on source-rock development: perspectives from the Holocene Black Sea, the Mid-Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin. In The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms and Consequences (ed. Harris, N. B.), pp. 3559. Society for Sedimentary Geology, Special Publication no. 82.Google Scholar
Bàbek, O. & Kalvoda, J. 2001. Compositional variations and patterns of conodont reworking in Late Devonian and Early Carboniferous calciturbidites (Moravia, Czech Republic). Facies 44, 211–26.Google Scholar
Ballèvre, M., Bosse, V., Ducassou, C. & Pitra, P. 2009. Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geoscience 341, 174201.Google Scholar
Becker, R. T. 1993. Stratigraphische Gliederung und Ammonoideen-Faunen im Nehdenium (oberdevon II) von Europa und Nord-Afrika. Courier Forschungsinstitut Senckenberg 155, 1405.Google Scholar
Becker, R. T., Ashouri, A. R. & Zyazdi, M. 2004. The upper Devonian Annulata event in the Shotori Range (eastern Iran). Neues Jahrbuch für Geologie und Paläontologie Ahbandlungen 231 (1), 119–43.Google Scholar
Becker, R. T. & Weyer, D. 2004. Bartzschiceras n. gen. (Ammonoidea) from the Lower Tournaisian of Southern France. Mitteilungen des Geologisch-Paläontologischen Instituts der Universität Hamburg 88, 1136.Google Scholar
Bischoff, G. C. O. & Ziegler, W. 1957. Die Conodontenchronologie des Mitteldevons und des tiefsten Oberdevons. Abhandlungen des hessischen Landesamtes für Bodenforschung 22, 136p.Google Scholar
Bond, D. P. G. & Wignall, P. B. 2008. The role of sea-level change and marine anoxia in the Frasnian-Famennian (Late Devonian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 263, 107–18.Google Scholar
Bond, D.P.G., Wignall, P. B. & Racki, G. 2004. Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine 141 (2), 173–93.Google Scholar
Bourrouilh, R. 1981. “Orthoceratitico-Rosso” et “Goniatitico Rosso”: faciès marqueurs de la naissance et de l'évolution de paléomarges au Paléozoïque. In Rosso Ammonitico Symposium (eds Farinacci, A. and Elmi, S.), pp. 3959. Roma: Technoscienza.Google Scholar
Boyer, F., Krylatov, S., Le Fèvre, J. & Stoppel, D. 1968. Le Dévonien supérieur et la limite Dévonien/Carbonifère en Montagne Noire (France). Lithostratigraphie. Biostratigraphie (conodontes). Bulletin du Centre de Recherches de Pau-SPNA 2 (1), 533.Google Scholar
Branson, E. B. & Mehl, M. G. 1934. Conodont studies number three. University of Missouri studies. A quarterly of research VIII, 171–259.Google Scholar
Buggisch, W. 1991. The Global Frasnian-Famennian “Kellwasser Event”. Geologische Rundschau 80 (1), 4972.Google Scholar
Buggisch, W. & Joachimski, M. M. 2006. Carbon isotope stratigraphy of the Devonian of Central and Southern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 6888.Google Scholar
Casier, J.-G., Devleeschouwer, X., Lethiers, F., Préat, A. & Racki, G. 2000. Ostracods and sedimentology of the Frasnian-Famennian boundary beds in the Kostomloty section (Holy Cross Mountains, Poland). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique 70, 5374.Google Scholar
Caswell, B. A. & Coe, A. L. 2012. A high-resolution shallow marine record of the Toarcian (Early Jurassic) Oceanic Anoxic Event from the East Midlands Shelf, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 365–366, 124–35.Google Scholar
Corradini, C. 1998. Late Devonian (Famennian) conodonts from SE Sardinia. In ECOS VII Abstracts (ed. Bagnoli, G.), pp. 26–7. Bologna-Modena: Tipografia Compositori Bologna.Google Scholar
Corradini, C. 2003. Late Devonian (Famennian) conodonts from the Corona Mizziu Sections near Villasalto (Sardinia, Italy). Palaeontographia Italica 89, 65116.Google Scholar
Corradini, C. 2008. Revision of the Famennian–Tournaisian (Late Devonian – Early Carboniferous) conodont biostratigraphy of Sardinia, Italy. Revue de Micropaléontologie 51, 123–32.Google Scholar
Coudray, J. & Michel, D. 1981. Analyse sédimentologique des “calcaires noduleux” qui encadrent les radiolarites du Dinantien de la Montagne Noire (France) et apport des données expérimentales à la compréhension de leur genèse. In Rosso Ammonitico Symposium Proceedings, pp. 149–67. Rome: Tecnosziensa.Google Scholar
Dopieralska, J. 2003. Neodynium isotopic composition of conodonts as a palaeoceanographic proxy in the Variscan oceanic system. In Institut für Geowissenschaften und Lithosphärenforschung. Giessen: Universität Giessen, 111 pp.Google Scholar
Dreesen, R. 1989. The “Cheiloceras Limestone”, a Famennian (upper Devonian) event-stratigraphical marker in Hercynian Europe and northwestern Africa? Bulletin de la Société Belge de Géologie 98, 127–33.Google Scholar
Droser, M. L. & Bottjer, D. J. 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentology and Petrology 56, 558–9.Google Scholar
Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks (ed. Ham, W. E.), pp. 108–21. American Association of Petroleum Geologists, Memoir no. 1.Google Scholar
Embry, A. F. & Klovan, J. E. 1971. A Late Devonian reef tract on Northeastern Banks Island, NWT. Canadian Petroleum Geology Bulletin 19, 730–81.Google Scholar
Engel, W., Feist, R. & Franke, W. 1982. Le Carbonifère anté-stéphanien de la Montagne Noire: rapports entre mise en place des nappes et sédimentation. Bulletin du BRGM 1, 341–89.Google Scholar
Faure, M., Lardeaux, J.-M. & Ledru, P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. Comptes rendus Geosciences 341, 202–13.CrossRefGoogle Scholar
Feist, R., ed. 2002. The Palaeozoic of the Montagne Noire, Southern France, Montpellier. In North Gondwana mid-Palaeozoic Biodynamics and ECOS VIII. Guidebook of the Field Trip Excursion, pp 1–82. Montpellier. Subcommission on Devonian Stratigraphy.Google Scholar
Flügel, E. 2004. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Berlin, Heildelberg, NewYork: Springer Verlag.Google Scholar
Franke, W. & Walliser, O. H. 1983. “Pelagic” carbonates in the Variscan belt: their sedimentary record and tectonic environment. In Intracontinental Fold Belts (eds Martin, H. & Eder, F. W.), pp. 7892. Berlin, Heildelberg, NewYork: Springer Verlag.Google Scholar
García-Alcalde, J. L. & Menéndez-Alvarez, J. R. 1988. The Devonian–Carboniferous boundary in the Asturo–Leonese Domain (Cantabrian Mountains, NW Spain). In Devonian–Carboniferous Boundary: Results of Recent Studies (eds Flajs, G., Feist, R. & Ziegler, W.), pp. 2137. Frankfurt: Courier Forschungsinstitut Senckenberg 100.Google Scholar
Gerecke, M. & Schindler, E. 2012. “Time-specific facies” and biological crises: the Kellwasser Event interval near the Frasnian/Famennian boundary (Late Devonian). Palaeogeography, Palaeoclimatology, Palaeoecology 367–368, 1929.Google Scholar
Gertsch, B., Adatte, T., Keller, G., Tantawy, A. A. A. M., Berner, Z., Mort, H. P. & Fleitmann, D. 2010. Middle and late Cenomanian oceanic anoxic events in shallow and deeper shelf environments of western Morocco. Sedimentology 57 (6), 1430–62.Google Scholar
Girard, C. 1994. Conodont biofacies and event stratigraphy across the D/C boundary in the stratotype area (Montagne Noire, France). In Willi Ziegler-Festschrift I (eds Königshof, P. & Werner, R.), pp. 299309. Frankfurt: Courier Forschungsinstitut Senckenberg 168.Google Scholar
Girard, C. & Feist, R. 1996. Eustatic trends in conodont diversity across the Frasnian/Famennian boundary in the stratotype area, Montagne Noire, France. Lethaia 29, 329–37.CrossRefGoogle Scholar
Girard, C. & Renaud, S. 2007. Quantitative conodont-based approaches for correlation of the Late Devonian Kellwasser anoxic events. Palaeogeography, Palaeoclimatology, Palaeoecology 250, 114–25.Google Scholar
Golonka, J. 2002. Plate-tectonic maps of the Phanerozoic. In Phanerozoic Reef Patterns (eds Kiessling, W., Flügel, E. & Golonka, J.), pp. 2175. London: Society of Sedimentary Geology, Special Publication no. 72.Google Scholar
Haq, B. U. & Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science 322, 64–8.Google Scholar
Hartenfels, S. 2010. The global annulata event and the Dasberg crisis (Famennian, Upper Devonian) of Europe and North Africa: high-resolution conodont stratigraphy, carbonate microfacies, palaeoecology, and palaeodiversity. Münstersche Forschungen zur Geologie und Paläontologie 105, 360.Google Scholar
Hartenfels, S. 2011. Die globalen Annulata-Events und die Dasberg-Krise (Famennium, Oberdevon) in Europa und Nord-Afrika – hochauflösende Conodonten-Stratigraphie, Karbonat-Mikrofazies, Paläoökologie und Paläodiversität. Münstersche Forschungen zur Geologie und Paläontologie, Paleontologia e Stratigrafia 115 (2), 141–58.Google Scholar
Hartenfels, S. & Becker, R. T. 2009. Timing of the global Dasberg Crisis – implications for Famennian eustasy and chronostratigraphy. Palaeontographica Americana 63, 7197.Google Scholar
Hass, W. H. 1959. Conodonts from the Chappel-Limestone of Texas. US Geological Survey Professional Paper 294, 365–99.Google Scholar
Helms, J. 1959. Conodonten aus dem Saalfelder Oberdevon (Thüringen). Geologie 6, 634–77.Google Scholar
House, M. R. 1985. Correlation of mid-Palaeozoic ammonoid evolutionary events with global sedimentary perturbations. Nature 313, 1722.Google Scholar
House, M. R. 2002. Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 525.Google Scholar
Huddle, J. W. 1934. Conodonts from the New Albany Shale of Indiana. Bulletin of American Paleontology 21 (72), 186323.Google Scholar
Ji, Q. & Ziegler, W. 1993. The Lali section: an excellent reference section for upper Devonian in South China. Courier Forschungsinstitut Senckenberg 157, 1183.Google Scholar
Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., Morrow, J. R., Day, J. & Weddige, K. 2009. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters 284, 599609.Google Scholar
Joachimski, M. & Buggisch, W. 2002. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30 (8), 711–14.Google Scholar
Johnson, J. G., Klapper, G. & Sandberg, C. A. 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin 96, 567–87.Google Scholar
Johnson, J. G. & Sandberg, C. A. 1989. Devonian eustatic events in the western United States and their biostratigraphic responses. In Devonian of the World. Paleontology, Paleoecology, Biostratigraphy (eds McMillan, N. J., Embry, A. F. & Glass, D. J.), pp. 171–78. Calgary: Canadian Society of Petroleum Geologists, Memoir 14.Google Scholar
Kaiser, S. I., Becker, R. T., Spalletta, C. & Steuber, T. 2009. High-resolution conodont stratigraphy, biofacies and extinctions around the Hangenberg Event in pelagic successions from Austria, Italy and France. Paleontographica Americana 63, 97139.Google Scholar
Kaiser, S. I., Steuber, T. & Becker, R. T. 2008. Environmental change during the Late Famennian and Early Tournaisian (Late Devonian–Early Carboniferous): implications from stable isotopes and conodont biofacies in southern Europe. Geological Journal 43, 241–60.Google Scholar
Kazmierczak, J., Kremer, B. & Racki, G. 2012. Late Devonian marine anoxia challenged by benthic cyanobacterial mats. Geobiology 10, 371–83.Google Scholar
Klapper, G. 1989. The Montagne Noire Frasnian (Upper Devonian) conodont succession. In Devonian of the World. Paleontology, Paleoecology, Biostratigraphy (eds McMillan, N. J., Embry, A. F. & Glass, D. J.), pp. 449–68. Calgary: Canadian Society of Petroleum Geologists, Memoir 14.Google Scholar
Königshof, P., Savage, N. N., Lutat, P., Sardsud, A., Dopieralska, J., Belka, Z. & Racki, G. 2012. Late Devonian sedimentary record of the Paleotethys Ocean: the Mae Sariang section, northwestern Thailand. Journal of Asian Earth Sciences 52, 146–57.Google Scholar
Lane, H. R., Sandberg, C. A. & Ziegler, W. 1980. Taxonomy and plylogeny of some lower Carboniferous conodonts and preliminary standard post-Siphonodella zonation. Geologica et Paleontologica 14, 117–64.Google Scholar
Lazreq, N. 1999. Biostratigraphie des conodontes du Givétien au Famennien du Maroc central: biofaciès et événement Kellwasser. Courier Forschungsinstitut Senckenberg 214, 1111.Google Scholar
Marynowski, L., Filipiak, P. & Zaton, M. 2010. Geochemical and palynological study of the Upper Famennian Dasberg event horizon from the Holy Cross Mountains (central Poland). Geological Magazine 147 (4), 527–50.Google Scholar
Marynowski, L., Zatoń, M., Rakocinski, M., Filipiak, P., Kurkiewicz, S. & Pearce, T. J. 2012. Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeography, Palaeoclimatology, Palaeoecology 346–347, 6686.Google Scholar
Matte, P. 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196 (3–4), 309–37.CrossRefGoogle Scholar
McGhee, G. R. J. 1996. The Late Devonian Mass Extinction: the Frasnian/Famennian Crisis. New York: Columbia University Press.Google Scholar
McLaughlin, P. I., Emsbo, P. & Brett, C. E. 2012. Beyond black shales: the sedimentary and stable isotope records of oceanic anoxic events in a dominantly oxic basin (Silurian, Appalachian Basin, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 367–8, 153–77.CrossRefGoogle Scholar
Morrow, J. 2000. Shelf-to-basin lithofacies and conodont paleoecology across Frasnian–Famennian (F-F, mid-Late Devonian) boundary, Central Great Basin (Western USA). Courier Forschungsinstitut Senckenberg 219, 157.Google Scholar
Morrow, J. & Sandberg, C. A. 2008. Evolution of Devonian carbonate-shelf margin, Nevada. Geosphere 4, 445–58.Google Scholar
Murphy, A. E., Sageman, B. B., Hollander, D. J., Lyons, T. W. & Brett, C. E. 2000. Black shale deposition and faunal turnover in the Devonian Appalachian basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography 15 (3), 280–91.CrossRefGoogle Scholar
Nysaether, E., Torsvik, T. H., Feist, R., Walderhaug, H. J. & Eide, E. A. 2002. Ordovician palaeogeography with new palaeomagnetic data from the Montagne Noire (Southern France). Earth and Planetary Science Letters 203, 329–41.Google Scholar
Peterhänsel, A. & Pratt, B. R. 2001. Nutrient-triggered bioerosion on a giant carbonate platform masking the postextinction Famennian benthic community. Geology 29 (12), 1079–82.2.0.CO;2>CrossRefGoogle Scholar
Playford, P. E. 1980. Devonian “Great Barrier Reef” of Canning Basin, Western Australia. American Association of Petroleum Geologists Bulletin 64 (6), 814–40.Google Scholar
Préat, A., Mamet, B., Bernard, A. & Gillanc, D. 1999. Bacterial mediation, red matrices diagenesis, Devonian, Montagne Noire (southern France). Sedimentary Geology 126, 223–42.Google Scholar
Racka, M., Marynowski, L., Filipiak, P., Sobstel, M., Pisarzowska, A. & Bond, D. P. G. 2010. Anoxic Annulata Events in the late Famennian of the Holy Cross Mountains (Southern Poland): geochemical and paleontological record. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 549–75.Google Scholar
Racki, G. 2005. Towards understanding Late Devonian global events: few answers, many questions. In Understanding Late Devonian and Permian–Triassic Biotic and Climatic Events: Towards an Integrated Approach (eds Over, D. J., Morrow, J. R. & Wignall, P. B.), pp. 536. Developments in Palaeontology and Stratigraphy Series. Amsterdam: Elsevier.Google Scholar
Raymond, D. 1987. The Devonian and the lower Carboniferous in southwestern France (Pyrenees, Mouthoumet massif, Montagne Noire): sedimentation in a flexural basin south of the Variscan collision belt. Geologische Rundschau 76, 795803.Google Scholar
Riquier, L., Tribovillard, N., Averbuch, O., Devleeschouwer, X. & Riboulleau, A. 2006. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): two oxygen-deficient periods resulting from different mechanisms. Chemical Geology 233 (1–2), 137–55.Google Scholar
Sandberg, C. A. 1976. Conodont biofacies of late Devonian Polygnathus styriacus Zone in western United States. In Conodont Paleoecology (ed. Barnes, C. R.), pp. 171–86. Montreal: Geological Association of Canada, Special Paper No. 15.Google Scholar
Sandberg, C. A. 1979. Devonian and Lower Mississipian conodont zonation of the Great Basin and Rocky Mountains. In Conodont Biostratigraphy of the Great Basin and Rocky Mountains (eds Sandberg, C. A. & Clark, D. L.), pp. 87106. Brigham Young University, Geology Studies, vol. 26.Google Scholar
Sandberg, C. A. & Dreesen, R. M. J. 1984. Late Devonian icriodontid biofacies models and alternate shallow water conodont zonation. In Conodont Biofacies and Provincialism (ed. Clark, D. L.), pp. 143–78. Boulder/Colorado: Geological Society of American, Special Paper no. 196.Google Scholar
Sandberg, C. A., Morrow, J. R. & Ziegler, W. 2002. Late Devonian sea-level changes, catastrophic events, and mass extinctions. Geological Society of America Special Paper 356, 473–87.Google Scholar
Sandberg, C. A. & Ziegler, W. 1979. Taxonomy and biofacies of important conodonts of Late Devonian styriacus Zone, United States and Germany. Geologica et Palaeontologica 13, 173212.Google Scholar
Sandberg, C. A., Ziegler, W., Dreesen, R. & Butler, J. L. 1988. Late Frasnian mass extinction: conodont event stratigraphy, global changes, and possible causes. Courier Forschungsinstitut Senckenberg 102, 263307.Google Scholar
Sandberg, C. A., Ziegler, W., Leuteritz, K. & Brill, S. M. 1978. Phylogeny, speciation and zonation of Siphonodella (Conodonta, Upper Devonian and Lower Carboniferous). Newsletters on Stratigraphy 7, 102–20.Google Scholar
Sanneman, D. 1955. Oberdevonische Conodonten (to IIalpha). Senckenbergiana Lethaea 36, 123–56.Google Scholar
Sanz Lopez, J., García López, S. & Montesinos, J. R. 1999. Conodontos del Frasniense superior y Fameniense inferior de la Formación Cardaño (Unidad del Gildar-Montó, Dominio Palentino, Zona Cantábrica). Revista Española de Paleontología 14 (1), 2535.Google Scholar
Savoy, L. E. & Harris, A. G. 1993. Conodont biofacies and taphonomy along a carbonate ramp to black shale basin (latest Devonian and earliest Carboniferous), southernmost Canadian Cordillera and adjacent Montana. Canadian Journal of Earth Sciences 30, 2404–22.Google Scholar
Schindler, E. 1990. The late Frasnian (Upper Devonian) Kellwasser crisis. In Extinction Events in Earth History, pp. 151–59. Lecture Notes in Earth Sciences. Berlin, Heidelberg: Springer.Google Scholar
Schülke, I. 2003. Famennian conodont biodiversity cycles. Courier Forschungsinstitut Senckenberg 242, 225–37.Google Scholar
Schülke, I. & Popp, A. 2005. Microfacies development, sea-level change, and conodont stratigraphy of Famennian mid- to deep platform deposits of the Beringhauser Tunnel section (Rheinisches Schiefergebirge, Germany). Facies 50, 647–64.Google Scholar
Seddon, G. & Sweet, W. C. 1971. An ecologic model for conodonts. Journal of Paleontology 45 (5), 869–80.Google Scholar
Stampfli, G. M., Hochard, C., Vérard, C., Wilhem, C. & vonRaumer, J. 2013. The formation of Pangea. Tectonophysics 593, 119.Google Scholar
Stigall, A. L. 2012. Speciation collapse and invasive species dynamics during the Late Devonian “Mass extinction”. Geological Society of America Today 22 (1), 49.Google Scholar
Tait, J. A., Bachtadse, V. & Dinarès-Turell, J. 2000. Paleomagnetism of Siluro-Devonian sequences, NE Spain. Journal of Geophysical Research 105 (B10), 23,595603.Google Scholar
Vierek, A. & Racki, G. 2011. Depositional versus ecological control on the conodont distribution in the Lower Frasnian fore-reef facies, Holy Cross Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 312, 123.Google Scholar
Voges, A. 1959. Conodonten aus dem Unterkarbon I und II (Gattendorfia - und Pericyclus-Stufe) des Sauerlandes. Paläontologisches Zeitschrift 33, 266314.Google Scholar
Walliser, O. H. 1984. Pleading for a natural D/C boundary. Courier Forschungsinstitut Senckenberg 67, 241–46.Google Scholar
Walliser, O. H. 1996. Global Events and Event Stratigraphy. Berlin, Heidelberg, New York: Springer Verlag.Google Scholar
Wendt, J. & Aigner, T. 1985. Facies patterns and depositional environments of Palaeozoic cephalopod limestones. Sedimentary Geology 44, 263300.CrossRefGoogle Scholar
Wendt, J., Kaufmann, B., Belka, Z., Klug, C. & Lubeseder, S. 2006. Sedimentary evolution of a Palaeozoic basin and ridge system: the Middle and Upper Devonian of the Ahnet and Mouydir (Algerian Sahara). Geological Magazine 143 (3), 269–99.Google Scholar
Wiederer, U., Königschof, P., Feist, R., Franke, W. & Doublier, M. P. 2002. Low grade metamorphism in the Montagne Noire (S–France): Conodont Alteration Index (CAI) in Paleozoic carbonates and implications for the exhumation metamorphic core complex. Schweizerische Mineralogische und Petrographische Mitteilung 82, 393407.Google Scholar
Wilde, P. & Berry, W. B. N. 1984. Destabilisation of the oceanic density structure and its significance to marine “extinction events”. Palaeogeography, Palaeoclimatology, Palaeoecology 48, 143–62.Google Scholar
Wilson, P. A. & Norris, R. D. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412, 425–29.Google Scholar
Wright, V. P. & Burchette, T. P. 1996. Shallow-water carbonate environments. In Sedimentary Environments: Processes, Facies, and Stratigraphy (ed. Reading, H. G.), pp. 325–94. Oxford: Blackwell Science.Google Scholar
Ziegler, W. 1957. Paläontologisher Teil. In Die Gliederung des Oberdevons une Unterkarbons am Steinberg westlich von Graz mit Conodonten (eds Flügel, E. & Ziegler, W.), pp. 2560. Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark.Google Scholar
Ziegler, W. 1960. Die Conodonten aus den Gerollen des Zechsteinkonglomerates von Rossen-ray (südwestlich Rheinberg/Niederrhein). Fortschritte in der Geologie von Rheinland und Westfalen 6, 391405.Google Scholar
Ziegler, W. 1962. Taxionomy und Phylogenie oberdevonischer Conodonten und ihre stratigraphische Bedeutung. Wiesbaden: Abhandlungen des hessischen Landesamtes für Bodenforschung.Google Scholar
Ziegler, W. 1971. Conodont stratigraphy of the European Devonian. The Geological Society of America, Memoir 127, 227–84.Google Scholar
Ziegler, W. & Huddle, J. W. 1969. Die Palmatolepis glabra-Gruppe (Conodonta) nach der revision dertypen von Ulrich & Bassler durch J.W. Huddle. Fortschritte in der Geologie von Rheinland und Westfalen 16, 377–86.Google Scholar
Ziegler, W., Ji, Q. & Wang, C. Y. 1988. Devonian–Carboniferous boundary: final candidates for a stratotype section. In Devonian–Carboniferous Boundary: Results of Recent Studies (eds Flajs, G., Feist, R. & Ziegler, W.), pp. 1519. Frankfurt: Courier Forschungsinstitut Senckenberg 100.Google Scholar
Ziegler, W. & Sandberg, C. A. 1984. Palmatolepis-based revision of upper part of standard Late Devonian conodont zonation. In Conodont Biofacies and Provincialism (ed. Clark, D. L.), pp. 179–94. Boulder/Colorado: Geological Society of American, Special Paper no. 196.Google Scholar
Ziegler, W. & Sandberg, C. A. 1990. The late Devonian standard conodont zonation. Courier Forschungsinstitut Senckenberg 121, 1115.Google Scholar
Ziegler, W., Sandberg, C. A. & Austin, R. L. 1974. Revision of the Bispathodus group (Conodonta) in the Upper Devonian and Lower Carboniferous. Geologica et Paleontologica 8, 97112.Google Scholar