Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T18:30:52.879Z Has data issue: false hasContentIssue false

Photoelectronic Utility of Photoinduced Electron Transfer by Phosphorescent Ir(III) Complexes

Published online by Cambridge University Press:  30 July 2014

Youngmin You*
Affiliation:
Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
Get access

Abstract

Intermolecular photoinduced electron transfer (PeT) has found a wide range of photoelectronic utility. One of the most notable examples includes the natural photosynthesis, where PeT between chlorophyll and quinone triggers photon-to-chemical energy conversion. We observed that phosphorescent Ir(III) complexes exhibited efficient PeT to trigger a cascade of catalytic intermolecular electron transfer among electrochemically active molecules. To establish the photoelectronic utility of PeT, a series of cyclometalated Ir(III) complexes were prepared and evaluated for photoelectrocatalytic conversion of dithienylethene (DTE) compounds. Selective photoexcitation of the Ir(III) complexes facilitated ultrafast PeT from DTE. The oxidative PeT initiated electrocatalytic cycloreversion of DTE, yielding one order of magnitude enhancement in quantum yields relative to direct photochromic conversion.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Irie, M., Chem. Rev. 100, 16851716 (2000).CrossRefGoogle Scholar
Perrier, A., Maurel, F. and Jacquemin, D., Acc. Chem. Res. 45, 11731182 (2012).CrossRefGoogle Scholar
Matsuda, K. and Irie, M., J. Photochem. Photobiol. C 5, 169182 (2005).CrossRefGoogle Scholar
Takami, S., Kawai, T. and Irie, M., Eur. J. Org. Chem. 37963800 (2002).3.0.CO;2-X>CrossRefGoogle Scholar
Cai, J., Farhat, A., Tsitovitch, P. B., Bodani, V., Toogood, R. D. and Murphy, R. S., J. Photochem. Photobiol. A 212, 176182 (2010).CrossRefGoogle Scholar
Kobatake, S. and Irie, M., Tetrahedron 59, 83598364 (2003).CrossRefGoogle Scholar
Murakami, M., Miyasaka, H., Okada, T., Kobatake, S. and Irie, M., J. Am. Chem. Soc. 126, 1476414772 (2004).CrossRefGoogle Scholar
Indelli, M. T., Carli, S., Ghirotti, M., Chiorboli, C., Ravaglia, M., Garavelli, M. and Scandola, F., J. Am. Chem. Soc. 130, 72867299 (2008).CrossRefGoogle Scholar
Lee, S., You, Y., Ohkubo, K., Fukuzumi, S. and Nam, W., Angew. Chem., Int. Ed. 51, 1315413158 (2012).CrossRefGoogle Scholar
Lee, S., You, Y., Ohkubo, K., Fukuzumi, S. and Nam, W., Chem. Sci. 5, 14631474 (2014).CrossRefGoogle Scholar
Lee, S., You, Y., Ohkubo, K., Fukuzumi, S. and Nam, W., Org. Lett. 14, 22382241 (2012).CrossRefGoogle Scholar
Woo, H., Cho, S., Han, Y., Chae, W.-S., You, Y. and Nam, W., J. Am. Chem. Soc. 135, 47714787 (2013).CrossRefGoogle Scholar