Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T13:10:33.226Z Has data issue: false hasContentIssue false

Microstructural Characterization of an Al-Li-Mg-Cu Alloy by Correlative Electron Tomography and Atom Probe Tomography

Published online by Cambridge University Press:  12 May 2014

Xiangyuan Xiong*
Affiliation:
Monash Centre for Electron Microscopy, Monash University, VIC 3800, Australia Department of Materials Engineering, Monash University, VIC 3800, Australia
Matthew Weyland
Affiliation:
Monash Centre for Electron Microscopy, Monash University, VIC 3800, Australia Department of Materials Engineering, Monash University, VIC 3800, Australia
*
*Corresponding author.xiangyuan.xiong@monash.edu
Get access

Abstract

Correlative electron tomography and atom probe tomography have been carried out successfully on the same region of a commercial 8090 aluminum alloy (Al-Li-Mg-Cu). The combination of the two techniques allows accurate geometric reconstruction of the atom probe tomography data verified by crystallographic information retrieved from the reconstruction. Quantitative analysis of the precipitate phase compositions and volume fractions of each phase have been obtained from the atom probe tomography and electron tomography at various scales, showing strong agreement between both techniques.

Type
FEMMS Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arslan, I., Marquis, E.A., Homer, M., Hekmaty, M.A. & Bartelt, N.C. (2008). Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 15791585.Google Scholar
Blavette, D., Duval, P., Letellier, L. & Guttmann, M. (1996). Atomic-scale APFIM and TEM investigation of grain boundary microchemistry in astrology nickel base superalloys. Acta Mater 44, 49955005.Google Scholar
De Castro, V., Rodrigo, P., Marquis, E.A. & Lozano-Perez, S. (2014). Oxide dispersion strengthened Fe-12Cr steel in three dimensions: An electron tomography study. J Nuclear Mater 444, 416420.CrossRefGoogle Scholar
Dunin-Borkowski, R.E., Newcomb, S.B., Kasama, T., Mccartney, M.R., Weyland, M. & Midgley, P.A. (2005). Conventional and back-side focused ion beam milling for off-axis electron holography of electrostatic potentials in transistors. Ultramicroscopy 103, 6781.CrossRefGoogle ScholarPubMed
Elagin, V.I. & Zakharov, V.V. (2013). Modern Al-Li alloys and prospects of their development. Metal Sci Heat Treat 55, 184190.Google Scholar
Gault, B., De Geuser, F., Bourgeois, L., Gabble, B.M., Ringer, S.P. & Muddle, B.C. (2011). Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al-Cu-Li-Mg-Ag alloy. Ultramicroscopy 111, 683689.Google Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13, 437447.Google Scholar
Grenier, A., Duguay, S., Barnes, J.P., Serra, R., Haberfehlner, G., Cooper, D., Bertin, F., Barraud, S., Audoit, G., Arnoldi, L., Cadel, E., Chabli, A. & Vurpillot, F. (2014). 3D analysis of advanced nano-devices using electron and atom probe tomography. Ultramicroscopy 136, 185192.Google Scholar
Kelly, T.F. & Larson, D.J. (2012). Atom probe tomography. Annu Rev Mater Res 42, 131.Google Scholar
Kovarik, L., Miller, M.K., Court, S.A. & Mills, M.J. (2006). Origin of the modified orientation relationship for S(S″)-phase in Al-Mg-Cu alloys. Acta Materialia 54, 17311740.Google Scholar
Larson, D.J., Gault, B., Geiser, B.P., de Geuser, F. & Vurpillot, F. (2013). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mater Sci 17, 236247.Google Scholar
Lavernia, E.J. & Grant, N.J. (1987). Review aluminiun-lithium alloys. J Mater Sci 22, 15211529.Google Scholar
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.Google Scholar
Miller, M.K. (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic Publishers.Google Scholar
Murayama, M., Hono, K., Saga, M. & Kikuchi, M. (1998). Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys. Mater Sci Eng A 250, 127132.CrossRefGoogle Scholar
Petersen, T.C. & Ringer, S.P. (2010). An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces. Comp Phys Commun 181, 676682.Google Scholar
Polmear, I. (2006). Light Alloys , 4th ed. Oxford: Elsevier. p. 58.Google Scholar
Prosa, T.J., Olson, D., Geiser, B., Larson, D.J., Henry, K. & Steel, E. (2013). Analysis of implanted silicon dopant profiles. Ultramicroscopy 132, 179185.Google Scholar
Rossell, M.D., Erni, R., Asta, M., Radmilovic, V. & Dahmen, U. (2009). Atomic-resolution imaging of lithium in Al3Li precipitates. Phys Rev B 80, 024110.CrossRefGoogle Scholar
Sanders, T.H. Jr. & Starke, E.A. Jr. (1982). The effect of slip distribution on the monotonic and cyclic ductility of Al-Li binary alloys. Acta Metall 30, 927939.Google Scholar
Starink, M.J., Gao, N., Kamp, N., Wang, S.C., Pitcher, P.D. & Sinclair, I. (2006). Relations between microstructure, precipitation, age-formability and damage tolerance of Al-Cu-Mg-Li (Mn, Zr, Sc) alloys for age forming. Mater Sci Eng A 418, 241249.Google Scholar
Wang, S.C. & Starink, M.J. (2005). Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys. Int Mater Rev 50, 193215.CrossRefGoogle Scholar