Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T12:23:42.068Z Has data issue: false hasContentIssue false

Three-Dimensional Fiber Segment Orientation Distribution Using X-Ray Microtomography

Published online by Cambridge University Press:  01 May 2014

Muhammad Tausif*
Affiliation:
Nonwovens Research Group, Centre for Technical Textiles, School of Design, University of Leeds, Leeds, LS2 9JT, UK Department of Textile Engineering, University of Engineering and Technology Lahore (Faisalabad Campus), 3.5 km Khurrianwala, Mukoowana Bypass Road, Faisalabad, Pakistan
Brian Duffy
Affiliation:
Oxford Centre for Collaborative and Applied Mathematics, University of Oxford, Oxford OX1 3LB, UK
Sergei Grishanov
Affiliation:
Nonwovens Research Group, Centre for Technical Textiles, School of Design, University of Leeds, Leeds, LS2 9JT, UK
Hamish Carr
Affiliation:
School of Computing, University of Leeds, Leeds LS2 9JT, UK
Stephen J. Russell
Affiliation:
Nonwovens Research Group, Centre for Technical Textiles, School of Design, University of Leeds, Leeds, LS2 9JT, UK
*
*Corresponding author. m.tausif@uet.edu.pk; taucif@gmail.com
Get access

Abstract

The orientation of fibers in assemblies such as nonwovens has a major influence on the anisotropy of properties of the bulk structure and is strongly influenced by the processes used to manufacture the fabric. To build a detailed understanding of a fabric’s geometry and architecture it is important that fiber orientation in three dimensions is evaluated since out-of-plane orientations may also contribute to the physical properties of the fabric. In this study, a technique for measuring fiber segment orientation as proposed by Eberhardt and Clarke is implemented and experimentally studied based on analysis of X-ray computed microtomographic data. Fiber segment orientation distributions were extracted from volumetric X-ray microtomography data sets of hydroentangled nonwoven fabrics manufactured from parallel-laid, cross-laid, and air-laid webs. Spherical coordinates represented the orientation of individual fibers. Physical testing of the samples by means of zero-span tensile testing and z-directional tensile testing was employed to compare with the computed results.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altendorf, H. & Jeulin, D. (2011). 3D directional mathematical morphology for analysis of fiber orientations. Image Anal Stereolog 28(3), 143153.CrossRefGoogle Scholar
Axelsson, M. (2007). 3D tracking of cellulose fibres in volume images. In Image Processing, 2007. ICIP 2007. IEEE International C onference, pp. 309–312. San Antonio, TX: IEEE.CrossRefGoogle Scholar
Backer, S. & Petterson, D.R. (1960). Some principles of nonwoven fabrics. Text Res J 30(9), 704711.CrossRefGoogle Scholar
Batchelor, W. (2003). Determination of load-bearing element length in paper using zero/short span tensile testing. Tappi J 2(8), 37.Google Scholar
Blanc, R., Germain, C., Costa, J.P.D., Baylou, P. & Cataldi, M. (2006). Fiber orientation measurements in composite materials. Compos A Appl Sci Manuf 37(2), 197206.CrossRefGoogle Scholar
Clarke, A., Archenhold, G. & Davidson, N. (1995). A novel technique for determining the 3D spatial distribution of glass fibres in polymer composites. Compos Sci Technol 55(1), 7591.CrossRefGoogle Scholar
Davis, G. & Elliott, J. (2006). Artefacts in X-ray microtomography of materials. Mater Sci Technol 22(9), 10111018.CrossRefGoogle Scholar
Eberhardt, C.N. & Clarke, A.R. (2002). Automated reconstruction of curvilinear fibres from 3D datasets acquired by X-ray microtomography. J Microsc 206(1), 4153.CrossRefGoogle ScholarPubMed
Edwards, S.L., Church, J.S., Alexander, D.L.J., Russell, S.J., Ingham, E., Ramshaw, J.A.M. & Werkmeister, J.A. (2010). Modeling tissue growth within nonwoven scaffolds pores. Tissue Eng Part C 17(2), 123130.CrossRefGoogle ScholarPubMed
Frank, K.K. & George, W.D. (1998). Textile preforming. In Handbook of Composites, Peters, S.T., (Ed.), pp. 397424. London: Chapman & Hall.Google Scholar
Gong, R.H. & Newton, A. (1996). Image-analysis techniques part II: The measurement of fibre orientation in nonwoven fabrics. J Text Inst 87(2), 371388.CrossRefGoogle Scholar
Hansen, S.M. (1993). Nonwoven engineering principles. In Nonwovens: Theory, Process, Performance, and Testing, Turbak, A.F. (Ed.), pp. 55138. Atlanta, GA: Tappi Press.Google Scholar
Hearle, J.W.S. & Ozsanlav, V. (1979). Studies of adhesive-bonded non-woven fabrics part III: The determination of fibre orientation and curl. J Text Inst 70(11), 487498.CrossRefGoogle Scholar
Jawerth, L.M., Munster, S., Vader, D.A., Fabry, B. & Weitz, D.A. (2009). A blind spot in confocal reflection microscopy: The dependence of fiber brightness on fiber orientation in imaging biopolymer networks. Biophys J 98(3), L1L3.CrossRefGoogle Scholar
Kallmes, O.J. (1969). Technique for determining the fiber orientation distribution throughout the thickness of a sheet. Tappi 52(3), 482485.Google Scholar
Komori, T. & Makishima, K. (1978). Estimation of fiber orientation and length in fiber assemblies. Text Res J 48(6), 309314.CrossRefGoogle Scholar
Krause, M., Hausherr, J., Burgeth, B., Herrmann, C. & Krenkel, W. (2010). Determination of the fibre orientation in composites using the structure tensor and local X-ray transform. J Mater Sci 45(4), 888896.CrossRefGoogle Scholar
Latil, P., Orgéas, L., Geindreau, C., Dumont, P. & Rolland du Roscoat, S. (2011). Towards the 3D in situ characterisation of deformation micro-mechanisms within a compressed bundle of fibres. Compos Sci Technol 71(4), 480488.CrossRefGoogle Scholar
Lux, J., Delisée, C. & Thibault, X. (2011). 3D characterization of wood based fibrous materials: An application. Image Anal Stereology 25(1), 2535.CrossRefGoogle Scholar
Malmberg, F., Lindblad, J., Östlund, C., Almgren, K.M. & Gamstedt, E.K. (2011). Measurement of fibre–fibre contact in three-dimensional images of fibrous materials obtained from X-ray synchrotron microtomography. Nucl Instrum Meth A 637(1), 143148.CrossRefGoogle Scholar
Narter, M.A., Batra, S.K. & Buchanan, D.R. (1999). Micromechanics of three-dimensional fibrewebs: Constitutive equations. Proc R Soc A 455(1989), 35433563.CrossRefGoogle Scholar
Neckář, B. & Das, D. (2012). Modelling of fibre orientation in fibrous materials. J Text Inst 103(3), 330340.Google Scholar
Oppenheim, A.V., Schafer, R.W. & Buck, J.R. (1999). Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Pourdeyhimi, B. & Dent, R. (1997). Measuring fiber orientation in nonwovens part IV: Flow field analysis. Text Res J 67(3), 181187.CrossRefGoogle Scholar
Pourdeyhimi, B., Dent, R. & Davis, H. (1997). Measuring fiber orientation in nonwovens part III: Fourier transform. Text Res J 67(2), 143151.CrossRefGoogle Scholar
Pourdeyhimi, B., Dent, R., Jerbi, A., Tanaka, S. & Deshpande, A. (1999). Measuring fiber orientation in nonwovens part V: Real webs. Text Res J 69(3), 185192.CrossRefGoogle Scholar
Pourdeyhimi, B. & Kim, H.S. (2002). Measuring fiber orientation in nonwovens: The Hough transform. Text Res J 72(9), 803809.CrossRefGoogle Scholar
Pourdeyhimi, B., Ramanathan, R. & Dent, R. (1996 a). Measuring fiber orientation in nonwovens part I: Simulation. Text Res J 66(11), 713722.CrossRefGoogle Scholar
Pourdeyhimi, B., Ramanathan, R. & Dent, R. (1996 b). Measuring fiber orientation in nonwovens part II: Direct tracking. Text Res J 66(12), 747753.CrossRefGoogle Scholar
Rawal, A. (2010). Structural analysis of pore size distribution of nonwovens. J Text Inst 101(4), 350359.CrossRefGoogle Scholar
Rawal, A., Kameswara Rao, P., Russell, S. & Jeganathan, A. (2010). Effect of fiber orientation on pore size characteristics of nonwoven structures. J Appl Polym Sci 118(5), 26682673.CrossRefGoogle Scholar
Shen, H., Nutt, S. & Hull, D. (2004). Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-CT imaging. Compos Sci Technol 64(13), 21132120.CrossRefGoogle Scholar
Shim, E., Pourdeyhimi, B. & Latifi, M. (2010). Three-dimensional analysis of segmented pie bicomponent nonwovens. J Text Inst 101(9), 773787.CrossRefGoogle Scholar
Stock, S.R. (1999). X-ray microtomography of materials. Int Mater Rev 44(4), 141164.CrossRefGoogle Scholar
Tan, J., Elliott, J. & Clyne, T. (2006). Analysis of tomography images of bonded fibre networks to measure distributions of fibre segment length and fibre orientation. Adv Eng Mater 8(6), 495500.CrossRefGoogle Scholar
Tausif, M. & Russell, S.J. (2012). Characterisation of the z-directional tensile strength of composite hydroentangled nonwovens. Polym Test 31(7), 944952.CrossRefGoogle Scholar
Wernersson, E.L., Brun, A. & Hendriks, C.L.L. (2009). Segmentation of wood fibres in 3D CT images using graph cuts. In Image Analysis and Processing–ICIAP, Foggia, P., Sansone, C. & Vento, M. (Eds.), pp. 92102. Berlin Heidelberg: Springer.Google Scholar
Wu, J., Rajwa, B., Filmer, D.L., Hoffmann, C.M., Yuan, B., Chiang, C.S., Sturgis, J. & Robinson, J.P. (2003). Analysis of orientations of collagen fibers by novel fiber-tracking software. Microsc Microanal 9(6), 574580.CrossRefGoogle ScholarPubMed
Xu, B. & Ting, Y.-L. (1995). Measuring structural characteristics of fiber segments in nonwoven fabrics. Text Res J 65(1), 4148.Google Scholar
Yang, H. & Lindquist, B.W. (2000). Three-dimensional image analysis of fibrous materials. In Applications of Digital Image Processing XXIII, Tescher, A.G. (Ed.), pp. 275282. Bellingham: SPIE – International Society Optical Engineering.CrossRefGoogle Scholar