Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T11:01:53.677Z Has data issue: false hasContentIssue false

Spin-resolved imaging and spectroscopy of individual molecules with sub-molecular spatial resolution

Published online by Cambridge University Press:  15 July 2014

Jens Brede
Affiliation:
Institute of Applied Physics and Interdisciplinary Nanoscience Center Hamburg, University of Hamburg, Germany; jbrede@physnet.uni-hamburg.de
Roland Wiesendanger
Affiliation:
Department of Physics, University of Hamburg, Germany; wiesendanger@physnet.uni-hamburg.de
Get access

Abstract

Organic materials are fascinating and promising candidates for nanoscale spintronic devices and may open viable routes toward quantum computing. Previous experiments on spin transport in organic devices, through break junctions or spin valves, unveiled exciting new frontiers of molecular magnetism. However, much more effort is needed to understand the properties of organic/magnetic interfaces at a microscopic level. In this article, we show how spin-polarized scanning tunneling microscopy and spectroscopy (SP-STM/STS) can provide unprecedented insights into organic/magnetic interfaces as an initial step toward favorably tailoring such interfaces in order to increase device efficiency. Based on the unique combination of spin-sensitivity, atomic-scale spatial resolution, and high-energy resolution, SP-STM/STS has proven to be an invaluable method for exploring spatial and bias dependences of spin-polarized currents through individual molecules as well as for revealing individual spin-split molecular orbitals interacting with ferromagnetic substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aviram, A., Ratner, M.A., Chem. Phys. Lett. 29, 277 (1974).Google Scholar
Joachim, C., Gimzewski, J., Aviram, A., Nature 408, 541 (2000).Google Scholar
Sanvito, S., Chem. Soc. Rev. 40, 3336 (2011).Google Scholar
Bogani, L., Wernsdorfer, W., Nat. Mater. 7, 179 (2008).Google Scholar
Dediu, V.A., Hueso, L.E., Bergenti, I., Taliani, C., Nat. Mater. 8, 707 (2009).Google Scholar
Yoo, J.-W., Chen, C.-Y., Jang, H.W., Bark, C.W., Prigodin, V.N., Eom, C.B., Epstein, A.J., Nat. Mater. 9, 638 (2010).Google Scholar
Leuenberger, M.N., Loss, D., Nature 410, 789 (2001).Google Scholar
Dei, A., Gatteschi, D., Angew. Chem. Int. Ed. 50, 11852 (2011).Google Scholar
Warner, M., Din, S., Tupitsyn, I.S., Morley, G.W., Stoneham, A.M., Gardener, J.A., Wu, Z., Fisher, A.J., Heutz, S., Kay, C.W.M., Aeppli, G., Nature 503, 504 (2013).Google Scholar
Wiesendanger, R., Rev. Mod. Phys. 81, 1495 (2009).Google Scholar
Dediu, V., Murgia, M., Matacotta, F.C., Taliani, C., Barbanera, S., Solid State Commun. 122, 181 (2002).Google Scholar
Xiong, Z.H., Wu, D., Valy Vardeny, Z., Shi, J., Nature 427, 821 (2004).Google Scholar
Drew, A.J., Hoppler, J., Schulz, L., Pratt, F.L., Desai, P., Shakya, P., Kreouzis, T., Gillin, W.P., Suter, A., Morley, N.A., Malik, V.K., Dubroka, A., Kim, K.W., Bouyanfif, H., Bourqui, F., Bernhard, C., Scheuermann, R., Nieuwenhuys, G.J., Prokscha, T., Morenzoni, E., Nat. Mater. 8, 109 (2009).Google Scholar
Cinchetti, M., Heimer, K., Wustenberg, J.-P., Andreyev, O., Bauer, M., Lach, S., Ziegler, C., Gao, Y., Aeschlimann, M., Nat. Mater. 8, 115 (2009).Google Scholar
Sun, D., Ehrenfreund, E., Vardeny, Z.V., Chem. Commun. 50, 1781 (2014).Google Scholar
Iacovita, C., Rastei, M.V., Heinrich, B.W., Brumme, T., Kortus, J., Limot, L., Bucher, J.P., Phys. Rev. Lett. 101, 116602 (2009).Google Scholar
Kawahara, S.L., Lagoute, J., Repain, V., Chacon, C., Girard, Y., Rousset, S., Smogunov, A., Barreteau, C., Nano Lett. 12, 4558 (2012).Google Scholar
Methfessel, T., Steil, S., Baadji, N., Großmann, N., Koffler, K., Sanvito, S., Aeschlimann, M., Cinchetti, M., Elmers, H.J., Phys. Rev. B: Condens. Matter 84, 224403 (2011).Google Scholar
Brede, J., Atodiresei, N., Kuck, S., Lazić, P., Caciuc, V., Morikawa, Y., Hoffmann, G., Blügel, S., Wiesendanger, R., Phys. Rev. Lett. 105, 047204 (2010).Google Scholar
Atodiresei, N., Brede, J., Lazić, P., Caciuc, V., Hoffmann, G., Blügel, S., Wiesendanger, R., Phys. Rev. Lett. 105, 066601 (2010).Google Scholar
Garnica, M., Stradi, D., Barja, S., Calleja, F., Díaz, C., Alcamí, M., Martín, N., Vázquez de Parga, A.L., Martín, F., Miranda, R., Nat. Phys. 9, 368 (2013).CrossRefGoogle Scholar
Schwöbel, J., Fu, Y., Brede, J., Dilullo, A., Hoffmann, G., Klyatskaya, S., Ruben, M., Wiesendanger, R., Nat. Commun. 3, 953 (2012).Google Scholar
Brede, J., Wiesendanger, R., Phys. Rev. B: Condens. Matter 86, 184423 (2012).Google Scholar
Fu, Y.-S., Xue, Q.-K., Wiesendanger, R., Phys. Rev. Lett. 108, 087203 (2012).Google Scholar
Wiesendanger, R., Güntherodt, H.-J., Güntherodt, G., Gambino, R.J., Ruf, R., Phys. Rev. Lett. 65, 247 (1990).Google Scholar
Raman, K.V., Kamerbeek, A.M., Mukherjee, A., Atodiresei, N., Sen, T.K., Lazić, P., Caciuc, V., Michel, R., Stalke, D., Mandal, S.K., Blügel, S., Münzenberg, M., Moodera, J.S., Nature 493, 509 (2013).Google Scholar
Barraud, C., Seneor, P., Mattana, R., Fusil, S., Bouzehouane, K., Deranlot, C., Graziosi, P., Hueso, L., Bergenti, I., Dediu, V., Petroff, F., Fert, A., Nat. Phys. 6, 615 (2010).Google Scholar
Javaid, S., Bowen, M., Boukari, S., Joly, L., Beaufrand, J.-B., Chen, X., Dappe, Y.J., Scheurer, F., Kappler, J.-P., Arabski, J., Wulfhekel, W., Alouani, M., Beaurepaire, E., Phys. Rev. Lett. 105, 077201 (2010).Google Scholar
Mannini, M., Pineider, F., Sainctavit, P., Danieli, C., Otero, E., Sciancalepore, C., Talarico, A.M., Arrio, M.-A., Cornia, A., Gatteschi, D., Sessoli, R., Nat. Mater. 8, 194 (2009).Google Scholar
Sessoli, R., Gatteschi, D., Caneschi, A., Novak, M.A., Nature 365, 141 (1993).Google Scholar
Ishikawa, N., Sugita, M., Wernsdorfer, W., Angew. Chem. Int. Ed. 44, 2931 (2005).Google Scholar
Rizzini, A.L., Krull, C., Balashov, T., Kavich, J.J., Mugarza, A., Miedema, P.S., Thakur, P.K., Sessi, V., Klyatskaya, S., Ruben, M., Stepanow, S., Gambardella, P., Phys. Rev. Lett. 107, 177205 (2011).Google Scholar
Malavolti, L., Poggini, L., Margheriti, L., Chiappe, D., Graziosi, P., Cortigiani, B., Lanzilotto, V., Buatier de Mongeot, F., Ohresser, P., Otero, E., Choueikani, F., Sainctavit, P., Bergenti, I., Dediu, V.A., Manninia, M., Sessoli, R., Chem. Commun. 49, 11506 (2013).Google Scholar
Kanamori, J., Terakura, K., J. Phys. Soc. Jpn. 70, 1433 (2002).Google Scholar
Candini, A., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Affronte, M., Nano Lett. 11, 2634 (2011).Google Scholar
Urdampilleta, M., Klyatskaya, S., Cleuziou, J.-P., Ruben, M., Wernsdorfer, W., Nat. Mater. 10, 502 (2011).Google Scholar
Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S., Kaizu, Y., J. Am. Chem. Soc. 125, 8694 (2003).Google Scholar
Branzoli, F., Carretta, P., Filibian, M., Zoppellaro, G., Graf, M.J., Galan-Mascaros, J.R., Fuhr, O., Brink, S., Ruben, M., J. Am. Chem. Soc. 131, 4387 (2009).Google Scholar
Komeda, T., Isshiki, H., Liu, J., Zhang, Y.-F., Lorente, N., Katoh, K., Breedlove, B.K., Yamashita, M., Nat. Commun. 2, 217 (2011).Google Scholar
Vitali, L., Fabris, S., Conte, A.M., Brink, S., Ruben, M., Baroni, S., Kern, K., Nano Lett. 8, 3364 (2008).Google Scholar