Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T09:52:03.063Z Has data issue: false hasContentIssue false

Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin

Published online by Cambridge University Press:  21 March 2014

HUA NIE
Affiliation:
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China email: jianhuaw@snnu.edu.cn
JIANHUA WU
Affiliation:
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China email: jianhuaw@snnu.edu.cn

Abstract

We investigate the effects of toxins on the multiple coexistence solutions of an unstirred chemostat model of competition between plasmid-bearing and plasmid-free organisms when the plasmid-bearing organism produces toxins. It turns out that coexistence solutions to this model are governed by two limiting systems. Based on the analysis of uniqueness and stability of positive solutions to two limiting systems, the exact multiplicity and stability of coexistence solutions of this model are established by means of the combination of the fixed-point index theory, bifurcation theory and perturbation theory.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Amann, H. (2004) Maximum principles and principal eigenvalues. In: Ferrera, J., López-Gómez, J. and Ruiz del Portal, F. R. (editors), Ten Mathematical Essays on Approximation in Analysis and Topology, Elsevier, Atlanta, GA, pp. 160.Google Scholar
[2]Belgacem, F. (1997) Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, Addison Wesley Longman, Harlow, UK.Google Scholar
[3]Chao, L. & Levin, B. R. (1981) Structured habitats and the evolution of anti-competitor toxins in bacteria. Proc. Nat. Acad. Sci. 75), 63246328.CrossRefGoogle Scholar
[4]Crandall, M. G. & Rabinowitz, P. H. (1973) Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161180.Google Scholar
[5]Figueiredo, D. G. & Gossez, J. P. (1992) Strict monotonicity of eigenvalues and unique continuation. Comm. Partial Differ. Equ. 17, 339346.Google Scholar
[6]Hess, P. (1991) Periodic Parabolic Boundary Value Problems and Positivity, Longman, Harlow, UK.Google Scholar
[7]Hsu, S. B., Li, Y. S. & Waltman, P. (2000) Competition in the presence of a lethal external inhibitor. Math. Biosci. 167, 177199.CrossRefGoogle ScholarPubMed
[8]Hsu, S. B., Luo, T. K. & Waltman, P. (1995) Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor. J. Math. Biol. 34, 225238.CrossRefGoogle Scholar
[9]Hsu, S. B. & Waltman, P. (1992) Analysis of a model of two competitors in a chemostat with an external inhibitor. SIAM J. Appl. Math. 52, 528540.CrossRefGoogle Scholar
[10]Hsu, S. B. & Waltman, P. (1993) On a system of reaction-diffusion equations arising from competition in an unstirred chemostat. SIAM J. Appl. Math. 53, 10261044.CrossRefGoogle Scholar
[11]Hsu, S. B. & Waltman, P. (1997) Competition between plasmid-bearing and plasmid-free organisms in selective media. Chem. Engrg. Sci. 52 (1), 2335.Google Scholar
[12]Hsu, S. B. & Waltman, P. (1998) Competition in the chemostat when one competitor produces a toxin. Japan J. Ind. Appl. Math. 15, 471490.Google Scholar
[13]Hsu, S. B. & Waltman, P. (2002) A model of the effect of anti-competitor toxins on plasmid-bearing, plasmid-free compettion. Taiwanese J. Math. 6, 135155.CrossRefGoogle Scholar
[14]Hsu, S. B. & Waltman, P. (2004) A survey of mathematical models of competition with an inhibitor. Math. Biosci. 187, 5391.CrossRefGoogle ScholarPubMed
[15]Hsu, S. B., Waltman, P. & Wolkowicz, G. S. K. (1994) Global analysis of a model of plasmid-bearing, plasmid-free competition in the chemostat. J. Math. Biol. 32, 731742.CrossRefGoogle Scholar
[16]Kato, T. (1966) Perturbation Theory of Linear Operators, Springer, Berlin, Germany.Google Scholar
[17]Lenski, R. E. & Hattingh, S. (1986) Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics. J. Theoret. Biol. 122, 8393.CrossRefGoogle ScholarPubMed
[18]Levin, B. R. (1988) Frequency-dependent selection in bacterial population. Phil. Trans. R. Soc. Lond. 319, 459472.Google Scholar
[19]López-Gómez, J. & Molina-Meyer, M. (1994) The maximum principle for cooperative weakly coupled elliptic systems and some applications. Differ. Integral Equ. 7, 383398.Google Scholar
[20]Nie, H. & Wu, J. (2006) A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor. Int. J. Bifurcation Chaos 16 (4), 9891009.CrossRefGoogle Scholar
[21]Nie, H. & Wu, J. (2007) Asymptotic behaviour of an unstirred chemostat with internal inhibitor. J. Math. Anal. Appl. 334, 889908.CrossRefGoogle Scholar
[22]Nie, H. & Wu, J. (2012) The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat. Discrete Contin. Dyn. Syst. 32 (1), 303329.Google Scholar
[23]Stephanopoulos, G. & Lapidus, G. (1988) Chemostat dynamics of plasmid-bearing plasmid-free mixed recombinant cultures. Chem. Engng Sci. 43, 4957.CrossRefGoogle Scholar
[24]Schaefer, H. H. (1966) Topological Vector Spaces, Macmillan, New York, NY.Google Scholar
[25]Wu, J. (2000) Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Anal. 39, 817835.Google Scholar
[26]Wu, J., Nie, H. & Wolkowicz, G. S. K. (2007) The effect of inhibitor on the plasmid-bearing and plasmid-free chemostat model. SIAM J. Math. Anal. 38, 18601885.CrossRefGoogle Scholar
[27]Xuang, X. C., Zhu, L. M. & Chang, E. H. C. (2006) The 3D Hoph bifurcation in bio-reactor when one competitor produces a toxin. Nonlinear Anal. Real World Appl. 7, 11671177.Google Scholar
[28]Zhu, L. M., Huang, X. C. & Su, H. Q. (2007) Bifurcation for a functional yield chemostat when one competitor produces a toxin. J. Math. Anal. Appl. 329, 891903.CrossRefGoogle Scholar