Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T22:27:03.855Z Has data issue: false hasContentIssue false

A Thom-Porteous formula for connective K-theory using algebraic cobordism

Published online by Cambridge University Press:  30 June 2014

Thomas Hudson*
Affiliation:
Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, South Korea
Get access

Abstract

Under the assumption that the base field k has characteristic 0, we prove a formula for the push-forward class of Bott-Samelson resolutions in the algebraic cobordism ring of the flag bundle. We specialise our formula to connective K-theory providing a geometric interpretation to the double β-polynomials of Fomin and Kirillov by computing the fundamental classes of schubert varieties. As a corollary we obtain a Thom-Porteous formula generalising those of the Chow ring and of the Grothendieck ring of vector bundles.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bressler, Paul and Evens, Sam, The Schubert calculus, braid relations, and generalized cohomology, Trans. Amer. Math. Soc. 317(2) (1990), 799811.Google Scholar
2.Buch, Anders Skovsted, Grothendieck classes of quiver varieties, Duke Math. J. 115(1) (2002), 75103.CrossRefGoogle Scholar
3.Calmès, B., Petrov, V., and Zainoulline, K., Invariants, torsion indices and oriented cohomology of complete flags, ArXiv e-prints (2009).Google Scholar
4.Dai, Shouxin, Algebraic cobordism and Grothendieck groups over singular schemes, Homology, Homotopy Appl. 12(1) (2010), 93110.Google Scholar
5.Dai, Shouxin and Levine, Marc, Connective Algebraic K-theory, Journal of K-Theory FirstView (2014), 148.Google Scholar
6.Fomin, S. and Kirillov, A. N., Yang-Baxter equation, symmetric functions and Grothendieck polynomials, ArXiv High Energy Physics - Theory e-prints (1993).Google Scholar
7.Fomin, Sergey and Kirillov, Anatol N., Grothendieck polynomials and the Yang-Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ, sd, pp. 183189.Google Scholar
8.Fomin, Sergey and Stanley, Richard P., Schubert polynomials and the nil-Coxeter algebra, Adv. Math. 103(2) (1994), 196207.Google Scholar
9.Fulton, William, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65(3) (1992), 381420.Google Scholar
10.Fulton, William, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics 2], Springer-Verlag, Berlin, 1998.Google Scholar
11.Fulton, William and Lascoux, Alain, A Pieri formula in the Grothendieck ring of a flag bundle, Duke Math. J. 76(3) (1994), 711729.Google Scholar
12.Fulton, William and Pragacz, Piotr, Schubert varieties and degeneracy loci, Lecture Notes in Mathematics 1689, Springer-Verlag, Berlin, 1998, Appendix J by the authors in collaboration with I. Ciocan-Fontanine.Google Scholar
13.Hornbostel, Jens and Kiritchenko, Valentina, Schubert calculus for algebraic cobordism, J. Reine Angew. Math. 656 (2011), 5985.Google Scholar
14.Kempf, G. and Laksov, D., The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153162.Google Scholar
15.Lascoux, Alain, Classes de Chern des variétés de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295(5) (1982), 393398.Google Scholar
16.Lascoux, Alain and Schützenberger, Marcel-Paul, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294(13) (1982), 447450.Google Scholar
17.Lascoux, Alain and Schützenberger, Marcel-Paul, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295(11) (1982), 629633.Google Scholar
18.Lazard, Michel, Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France 83 (1955), 251274.Google Scholar
19.Levine, M. and Morel, F., Algebraic cobordism, Springer Monographs in Mathematics, Springer, Berlin, 2007.Google Scholar
20.Porteous, I. R., Simple singularities ofmaps, Proceedings of Liverpool Singularities Symposium, I (1969/1970) (Berlin), Springer, 1971, pp. 286307. LectureNotes in Math. 192.Google Scholar
21.Ramanathan, A., Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math. 80(2) (1985), 283294.Google Scholar
22.Vishik, A., Symmetric operations in algebraic cobordism, Adv. Math. 213(2) (2007), 489552.Google Scholar