Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T16:55:38.368Z Has data issue: false hasContentIssue false

Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the Mojave Desert: a Mars terrestrial analogue

Published online by Cambridge University Press:  14 May 2014

Heather D. Smith
Affiliation:
Biological Engineering Department, UMC 4105, Utah State University, Logan, UT 84322, USA Space Science Division, M/S 245-3, NASA Ames Research Center, Moffett Field, CA 94035, USA
Mickael Baqué
Affiliation:
Department of Biology University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica snc 00133 Rome, Italy
Andrew G. Duncan
Affiliation:
Micro Bio Systems of Utah, Logan, UT 84341, USA
Christopher R. Lloyd
Affiliation:
Micro Bio Systems of Utah, Logan, UT 84341, USA
Christopher P. McKay
Affiliation:
Space Science Division, M/S 245-3, NASA Ames Research Center, Moffett Field, CA 94035, USA
Daniela Billi*
Affiliation:
Department of Biology University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica snc 00133 Rome, Italy

Abstract

The Mojave Desert has been long considered a suitable terrestrial analogue to Mars in many geological and astrobiological aspects. The Silver Lake region in the Mojave Desert hosts several different rock types (talc, marble, quartz, white carbonate and red-coated carbonate) colonized by hypoliths within a few kilometres. This provides an opportunity to investigate the effect of rock type on hypolithic colonization in a given environment. Transmission measurements from 300 to 800 nm showed that the transmission of blue and UVA varied between rock types. The wavelength at which the transmission fell to 1% of the transmission at 600 nm was 475 nm for white carbonate and quartz, 425 nm for red-coated carbonate and talc and 380 nm for marble. The comparative analysis of the cyanobacterial component of hypoliths under different rocks, as revealed by sequencing 16S rRNA gene clone libraries, showed no significant variation with rock type; hypoliths were dominated by phylotypes of the genus Chroococcidiopsis, although less abundant phylotypes of the genus Loriellopsis, Leptolyngbya and Scytonema occurred. The comparison of the confocal laser scanning microscopy-λ (CLSM-λ) scan analysis of the spectral emission of the photosynthetic pigments of Chroococcidiopsis in different rocks with the spectrum of isolated Chroococcidiopsis sp. 029, revealed a 10 nm red shift in the emission fingerprinting for quartz and carbonate and a 5 nm red shift for talc samples. This result reflects the versatility of Chroococcidiopsis in inhabiting dry niches with different light availability for photosynthesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbey, W., Salas, E., Bhartia, R. & Beegle, L.W. (2013). The Mojave Vadose zone: a subsurface biosphere analogue for Mars. Astrobiology 13, 637646.CrossRefGoogle Scholar
Antony, C.P., Cockell, C.S. & Shouche, Y.S. (2012). Life in (and on) the rocks. J. Biosci. 37, 311.Google Scholar
Baqué, M., Scalzi, G., Rabbow, E., Rettberg, P. & Billi, D. (2013a). Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations. Orig. Life Evol. Biosph. 113.Google ScholarPubMed
Baqué, M., de Vera, J.-P., Rettberg, P. & Billi, D. (2013b). The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronaut. 91, 180186.CrossRefGoogle Scholar
Baqué, M., Viaggiu, E., Scalzi, G. & Billi, D. (2013c). Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation. Extremophiles 17, 161169.CrossRefGoogle ScholarPubMed
Billi, D. (2009). Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13, 4957.CrossRefGoogle ScholarPubMed
Billi, D., Friedmann, E.I., Hofer, K.G., Caiola, M.G. & Ocampo-Friedmann, R. (2000). Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl. Environ. Microbiol. 66, 14891492.Google Scholar
Billi, D., Baqué, M., Smith, H.D. & McKay, C.P. (2013). Cyanobacteria from extreme deserts to space. Adv. Microbiol. 3, 8086.Google Scholar
Bishop, J.L., Schelble, R.T., McKay, C.P., Brown, A.J. & Perry, K.A. (2011). Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates. Int. J. Astrobiol. 10, 349358.Google Scholar
Brown, A.J., Hook, S.J., Baldridge, A.M., Crowley, J.K., Bridges, N.T., Thomson, B.J., Marion, G.M., de Souza Filho, C.R. & Bishop, J.L. (2010). Hydrothermal formation of Clay-Carbonate alteration assemblages in the Nili Fossae region of Mars. Earth Planet. Sci. Lett. 297, 174182.CrossRefGoogle Scholar
Chan, Y., Lacap, D.C., Lau, M.C.Y., Ha, K.Y., Warren-Rhodes, K.A., Cockell, C.S., Cowan, D.A., McKay, C.P. & Pointing, S.B. (2012). Hypolithic microbial communities: between a rock and a hard place. Environ. Microbiol. 14, 22722282.Google Scholar
Chen, M., Schliep, M., Willows, R.D., Cai, Z.-L., Neilan, B.A. & Scheer, H. (2010). A red-shifted chlorophyll. Science 329, 13181319.Google Scholar
Chen, M., Li, Y., Birch, D. & Willows, R.D. (2012). A cyanobacterium that contains chlorophyll f – a red-absorbing photopigment. FEBS Lett. 586, 32493254.Google Scholar
Davila, A.F., Hawes, I., Ascaso, C. & Wierzchos, J. (2013). Salt deliquescence drives photosynthesis in the hyperarid Atacama desert. Environ. Microbiol. Rep. 5, 583587.Google Scholar
Farr, T.G. (2004). Terrestrial analogs to Mars: the NRC community decadal report. Planet. Space Sci. 52, 310.Google Scholar
Gutu, A. & Kehoe, D.M. (2012). Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in Cyanobacteria. Mol. Plant 5, 113.Google Scholar
Jolitz, R.D. & McKay, C.P. (2013). Quantitative 3D model of light transmittance through translucent rocks applied to the hypolithic microbial community. Microb. Ecol. 66, 112119.Google Scholar
Kemp, P.F. & Aller, J.Y. (2004). Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol. Ecol. 47, 161177.CrossRefGoogle ScholarPubMed
Lacap, D.C., Warren-Rhodes, K.A., McKay, C.P. & Pointing, S.B. (2011). Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15, 3138.Google Scholar
Lanza, N.L., Ollila, A.M., Cousin, A., Hardgrove, C., Wiens, R.C., Mangold, N. & Vaniman, D. (2014). Manganese trends with depth on rock surfaces in Gale Crater, Mars. In Lunar and Planetary Institute Science Conf. Abstracts, vol. 45, p. 2599.Google Scholar
Navarro-González, R. et al. (2003). Mars-like soils in the Atacama desert, Chile, and the dry limit of microbial life. Science 302, 10181021.CrossRefGoogle ScholarPubMed
O'Malley-James, J.T., Raven, J.A., Cockell, C.S. & Greaves, J.S. (2012). Life and light: exotic photosynthesis in binary and multiple-star systems. Astrobiology 12, 115124.CrossRefGoogle ScholarPubMed
Roldán, M., Thomas, F., Castel, S., Quesada, A. & Hernández-Mariné, M. (2004). Noninvasive pigment identification in single cells from living phototrophic biofilms by confocal imaging Spectrofluorometry. Appl. Environ. Microbiol. 70(6), 37453750.CrossRefGoogle ScholarPubMed
Rudi, K., Skulberg, O.M. & Jakobsen, K.S. (1998). Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J. Bacteriol 180, 34533461.Google Scholar
Schlesinger, W.H., Pippen, J.S., Wallenstein, M.D., Hofmockel, K.S., Klepeis, D.M. & Mahall, B.E. (2003). Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84, 32223231.Google Scholar
Stivaletta, N., Barbieri, R. & Billi, D. (2012). Microbial colonization of the salt deposits in the driest place of the Atacama desert (Chile). Orig. Life Evol. Biosph. 42, 187200.Google Scholar
Stomeo, F., Valverde, A., Pointing, S.B., McKay, C.P., Warren-Rhodes, K.A., Tuffin, M.I., Seely, M. & Cowan, D.A. (2013). Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17, 329337.Google Scholar
De Vera, J.-P. et al. (2012). Supporting mars exploration: BIOMEX in low earth orbit and further astrobiological studies on the moon using Raman and PanCam technology. Planet. Space Sci. 74, 103110.Google Scholar
Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S.A., Lacap, D.C., Gómez-Silva, B., Amundson, R., Friedmann, E.I. & McKay, C.P. (2006). Hypolithic cyanobacteria, dry Limit of photosynthesis, and microbial ecology in the gyperarid Atacama desert. Microb. Ecol. 52, 389398.Google Scholar
Warren-Rhodes, K.A. et al. (2013). Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat, and light. J. Geophys. Res. Biogeosci. 118(4), 14511460.Google Scholar
Wierzchos, J., Ascaso, C. & McKay, C.P. (2006). Endolithic Cyanobacteria in Halite rocks from the Hyperarid core of the Atacama desert. Astrobiology 6, 415422.CrossRefGoogle ScholarPubMed
Wierzchos, J., de los Ríos, A. & Ascaso, C. (2013). Microorganisms in desert rocks: the edge of life on Earth. Int. Microbiol. 15, 171181.Google Scholar