Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T17:11:37.128Z Has data issue: false hasContentIssue false

MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films

Published online by Cambridge University Press:  12 June 2014

Anirudha V. Sumant
Affiliation:
Argonne National Laboratory, IL, USA; sumant@anl.gov
Orlando Auciello
Affiliation:
University of Texas at Dallas, USA; orlando.auciello@utdallas.edu
Meiyong Liao
Affiliation:
National Institute for Materials Science, Japan; meiyong.liao@nims.go.jp
Oliver A. Williams
Affiliation:
School of Physics and Astronomy, Cardiff University, UK; williamso@cf.ac.uk
Get access

Abstract

Diamond, because of its unique physical, chemical, and electrical properties and the feasibility of growing it in thin-film form, is an ideal choice as a material for the fabrication of reliable, long endurance, microelectromechanical/nanoelectromechanical systems (MEMS/NEMS). However, various practical challenges, including wafer-scale thickness uniformity, CMOS compatibility, surface micromachining, and, more importantly, controlling the internal stress of the diamond films, make this material more challenging for MEMS engineers. Recent advances in the growth of diamond films using chemical vapor deposition have changed this landscape since most technical hurdles have been overcome, enabling a new era of diamond-based MEMS and NEMS development. This article discusses a few examples of MEMS and NEMS devices that have been fabricated using mono-, nano-, and ultrananocrystalline diamond films as well as their performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Krauss, A.R., Auciello, O., Gruen, D.M., Jayatissa, A., Sumant, A.V., Tucek, J., Mancini, D.C., Moldovan, N., Erdemir, A., Ersoy, D., Gardos, M.N., Busmann, H.G., Meyer, E.M., Ding, M.Q., Diam. Relat. Mater. 10, 1952 (2001).Google Scholar
Kohn, E., Gluche, P., Adamschik, M., Diam. Relat. Mater. 8, 934 (1999).CrossRefGoogle Scholar
Butler, J.E., Sumant, A.V., Chem. Vap. Depos. 14 (7–8), 145 (2008).Google Scholar
Buja, F., Sumant, A.V., van Spengen, W.M., Solid-State Sensors, Actuators and Microsystems 2349 (2013), doi: 10.1109/Transducers.2013.6627277.Google Scholar
Liao, M.Y., Li, C., Hishita, S., Koide, Y., J. Micromech. Microeng. 20, 085002 (2010).CrossRefGoogle Scholar
Liao, M.Y., Hishita, S., Watanabe, E., Koizumi, S., Koide, Y., Adv. Mater. 22, 5393 (2010).Google Scholar
Sudarsan, S., Hiller, J., Kabius, B., Auciello, O., Appl. Phys. Lett. 90, 134101 (2007).Google Scholar
Zalazar, M., Gurman, P., Park, J., Kim, D., Hong, S., Stan, L., Divan, R., Czaplewski, D., Auciello, O., Appl. Phys. Lett. 102, 104101 (2013).Google Scholar
Sumant, A.V., Auciello, O., Yuan, H.-C., Ma, Z., Carpick, R.W., Mancini, D.C., Proc. SPIE Int. Soc. Opt. Eng. 7317, 731817 (2009).Google Scholar
Goldsmith, C., Sumant, A., Auciello, O., Carlisle, J., Zeng, H., Hwang, J.C.M., Palego, C., Wang, W., Carpick, R., Adiga, V., Datta, A., Gudeman, C., O’Brien, S., Sampath, S., IEEE Int. Microw. Symp. Dig. 1246 (2010).Google Scholar
Maze, J.R., Stanwix, P.L., Hodges, J.S., Hong, S., Taylor, J.M., Cappellaro, P., Jiang, L., Dutt, M.V.G., Togan, E., Zibrov, A.S., Yacoby, A., Walsworth, R.L., Lukin, M.D., Nature 455, 644 (2008).CrossRefGoogle Scholar
Taylor, J.M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P.R., Yacoby, A., Walsworth, R., Lukin, M.D., Nat. Phys. 4, 810 (2008).Google Scholar
Lee, S.W., Lee, D.S., Morjan, R.E., Jang, S.H., Sveningsson, M., Nerushev, O.A., Park, Y.W., Campbell, E.B., Nano Lett. 4, 2027 (2004).Google Scholar
Adamschik, M., Kusterer, J., Schmid, P., Schad, K.B., Grobe, D., Kohn, E., Diam. Relat. Mater. 11, 672 (2002).Google Scholar
Battacharyya, S., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyete, A.N., Gruen, D.M., Krauss, A.R., Schlueter, J., Sumant, A.V., Zapol, P., Appl. Phys. Lett. 79 (10), 1441 (2001).Google Scholar
Williams, O.A., Kriele, A., Hees, J., Wolfer, M., Muller-Sebert, W., Nebel, C.E., Chem. Phys. Lett. 495, 84 (2010).CrossRefGoogle Scholar
Wang, J., Butler, J.E., Feygelson, T., Nguyen, C.T.C., 17th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest. 641 (2004).Google Scholar
Gaidarzhy, A., Imboden, M., Mohanty, P., Rankin, J., Sheldon, B.W., Appl. Phys. Lett. 91, 203503 (2007).Google Scholar
Rodriguez-Madrid, J.G., Iriarte, G.F., Pedros, J., Williams, O.A., Brink, D., Calle, F., IEEE Electron Device Lett. 33, 495 (2012).Google Scholar
Imboden, M., Williams, O., Mohanty, P., Appl. Phys. Lett. 102, 103502 (2013).Google Scholar
Imboden, M., Williams, O.A., Mohanty, P., Nano Lett. 13, 4014 (2013).Google Scholar
Mandal, S., Bautze, T., Williams, O.A., Naud, C., Bustarret, E., Omnes, F., Rodiere, P., Meunier, T., Baeuerle, C., Saminadayar, L., ACS Nano 5, 7144 (2011).Google Scholar
Bautze, T., Mandal, S., Williams, O.A., Rodière, P., Meunier, T., Bäuerle, C., Carbon 72, 100 (2014).Google Scholar
Rebeiz, G.M., RF MEMS, Theory, Design and Technology (Wiley, NY, 2003).CrossRefGoogle Scholar
Yao, Z.J., Chen, S., Eshelman, S., Denniston, D., Goldsmith, C., J. Microelectromech. Syst. 8 (2), 129 (1999).Google Scholar
Goldsmith, C.L., Yao, Z., Eshelman, S., Denniston, D., IEEE Microwave and Guided Wave Lett. 8 (8), 269 (1998).Google Scholar
Auciello, O., Pacheco, S., Sumant, A.V., Gudeman, C., Sampath, S., Datta, A., Carpick, R.W., Adiga, V.P., Zurcher, P., Ma, Z., Yuan, H.C., Carlisle, J.A., Kabius, B., Hiller, J., IEEE Microwave Mag. 8, 61 (2008).Google Scholar
Sumant, A.V., Auciello, O., Carpick, R.W., Srinivasan, S., Butler, J.E., MRS Bull. 35, 281 (2010).Google Scholar
Sumant, A.V., Auciello, O., Mancini, D., US Patent 8,354,290 B2 (2013).Google Scholar
Auciello, O., Sumant, A.V., Goldsmith, C., O’Brien, S., Sampath, S., Gudeman, C., Wang, W., Hwang, J.C.M., Swonger, J., Carlisle, J.A., Balachandran, S., Mancini, D.C., Proc. in SPIE 7679, 9 (2010).Google Scholar