Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T22:01:06.792Z Has data issue: false hasContentIssue false

Geochronology, geochemistry and petrogenesis of the late Palaeoproterozoic A-type granites from the Dunhuang block, SE Tarim Craton, China: implications for the break-up of the Columbia supercontinent

Published online by Cambridge University Press:  19 September 2013

SHENG-YAO YU*
Affiliation:
State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang, Beijing 100037, PR China
JIAN-XIN ZHANG
Affiliation:
State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang, Beijing 100037, PR China Nanjing Institute of Geology and Mineral Resources, Nanjing 210016, PR China
XI-LIN ZHAO
Affiliation:
Nanjing Institute of Geology and Mineral Resources, Nanjing 210016, PR China
JIANG-HUA GONG
Affiliation:
State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang, Beijing 100037, PR China
YUN-SHUAI LI
Affiliation:
State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang, Beijing 100037, PR China
*
Author for correspondence: yushengyao1981@163.com

Abstract

The discovery of c. 1.77 Ga A-type granite in the Tarim Craton (TC) provides the first evidence that supports an extensional event related to fragmentation of the Columbia supercontinent in the late Palaeoproterozoic. We present laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb ages, Lu–Hf isotopic data and the whole-rock geochemical and Nd isotopic data of A-type granites in the Dunhuang area in the SE Tarim Craton. Zircon U–Pb dating for three granite samples indicate that they were emplaced at c. 1.77 Ga. Zircons from these granites have εHf(t) values ranging from –5.9 to 8.7, corresponding to two-stage model ages of 1.9–2.7 Ga. These granites exhibit the following petrological geochemical characteristics that are typical of A-type granite: (a) high content of SiO2 and alkalis (i.e. high K2O + Na2O with K2O/Na2O > 1), enrichment of high-field-strength elements (HFSE) and rare Earth elements (REE) (except for Eu) and extreme depletion of Ba, Sr, P, Ti and Eu; (b) 10000×Ga/Al ratios in the Dunhuang granites of 3.5–4.4, with an average value of 3.79 which is similar to the global average of 3.75 for A-type granites; (c) the presence of characteristic minerals such as amphibole, sphene and perthite; and (d) zirconium saturation temperature results indicate that the Dunhuang granites have high initial magmatic temperatures in the range 887–950°C, similar to those of typical of A-type granites. Whole-rock εNd(t) values range from –2.5 to –6.2 and TDM model ages from 2.3 to 2.7 Ga. Nd–Hf isotopic and whole-rock geochemical data indicate that these granites were most likely derived from the late Archean crustal source in a post-collisional/post-orogenic extensional tectonic environment. The late Palaeoproterozoic A-type granites in the TC could be correlated with those of the North China Craton (NCC), India and the Canadian Shield, thus demonstrating extensional tectonics and break-up of the Columbia supercontinent.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, I. C., Frost, C. D. & Frost, B. R. 2003. Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite. Precambrian Research 124, 243–67.CrossRefGoogle Scholar
Batchelor, R. A. & Bowden, P. 1985. Petrogenetic interpretation of granitic rock series using multicationic parameters. Chemical Geology 48, 4355.CrossRefGoogle Scholar
Biju-Sekhar, S., Yokoyama, K., Pandit, M. K., Okudaira, T., Yoshida, M. & Santosh, M. 2003. Late Paleoproterozoic magmatism in Delhi Fold Belt, NW India and its implication: evidence from EPMA chemical ages of zircons. Journal of Asian Earth Sciences 22, 189207.CrossRefGoogle Scholar
Blichert-Toft, J. & Albarede, F. 1997. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planetary and Science Letters 148, 243–58.CrossRefGoogle Scholar
Bogaerts, M., Scaillet, B., Liegeois, J. P. & Vander Auwera, J. 2003. Petrology and geochemistry of the Lyngdal granodiorite (Southern Norway) and the role of fractional crystallisation in the genesis of Proterozoic ferro-potassic A-type granites. Precambrian Research 124, 149–84.CrossRefGoogle Scholar
Bonin, B. 2007. A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97, 129.CrossRefGoogle Scholar
Bureau Of Geology And Mineral Resources Of Gansu Province (BGMG). 1989. Regional Geology of Gansu Province. Beijing: Geological Publishing House, Geological Memoirs, 2135.Google Scholar
Chaudhri, N., Kaur, P., Okrusch, M. & Schimrosczyk, A. 2003. Characterisation of the Dabla granitoids, North Khetri Copper Belt, Rajasthan, India: evidence of bimodal anorogenic felsic magmatism. Gondwana Research 6, 879–95.CrossRefGoogle Scholar
Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., German, C. R., Bayon, G. & Burton, K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–74.CrossRefGoogle Scholar
Clements, J. D., Holloway, J. R. & White, A. J. R. 1986. Origin of an A-type granite: experimental constraints. American Mineralogist 71, 317–24.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of Atype granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology 80, 189200.CrossRefGoogle Scholar
Condie, K. C., Belousova, E., Griffin, W. L. & Sircombe, K. N. 2009. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Research 15, 228–42.CrossRefGoogle Scholar
Creaser, R. A., Price, R. C. & Wormald, R. J. 1991. A-type granites revisited: Assessment of a residual-source model. Geology 19, 163–66.2.3.CO;2>CrossRefGoogle Scholar
Cui, M. L., Zhang, B. L. & Zhang, L. C. 2011. U–Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton: constraints on the timing and tectonic setting of the Paleoproterozoic Xiong'er group. Gondwana Research 20, 184–93.CrossRefGoogle Scholar
Dall'Agnol, R. & de Oliveira, D. C. 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajas, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos 93 (3–4), 215–33.CrossRefGoogle Scholar
Eby, G. N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26 (1–2), 115–34.CrossRefGoogle Scholar
Eby, G. N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 20, 641–44.2.3.CO;2>CrossRefGoogle Scholar
Elhlou, S., Belousova, E., Griffin, W. L., Pearson, N. J. & O'Reilly, S. Y. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim Cosmochim Acta, Suppl. A158.Google Scholar
Faure, M., Trap, P., Lin, W., Monie, P. & Bruguier, O. 2007. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the Lüliangshan–Hengshan–Wutaishan and Fuping massifs. Episodes 30, 112.CrossRefGoogle Scholar
Feng, B. Z., Zhou, Y. W., Chi, S. F., Yang, T. Q., Zhong, C. X. & Ye, S. Q. 1995. Pre-Sinian Geology and Noble Metals, Colored Metals Mineralization in Quruqtagh, Xinjiang. Beijing: Geological Publishing House, pp. 1282 (in Chinese with English abstract).Google Scholar
Frost, C. D. & Frost, B. R. 1997. Reduced rapakivi-type granites: the tholeiite connection. Geology 25 (7), 647–50.2.3.CO;2>CrossRefGoogle Scholar
Frost, C. D., Frost, B. R., Chamberlain, K. R. & Edwards, B. 1999. Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced, rapakivi-type anorogenic granite. Journal of Petrology 40, 1771–802.CrossRefGoogle Scholar
Geng, Y. S., Du, L. L. & Ren, L. D. 2011. Growth and reworking of the early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes. Gondwana Research, doi:10.1016/j.gr.2011.07.006.Google Scholar
Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X. & Zhou, X. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes. Tonglu and Pingtan igneous complexes. Lithos 61, 237–69.CrossRefGoogle Scholar
Guo, J. H., Sun, M., Chen, F. K. & Zhai, M. G. 2005. Sm-Nd and SHRIMPU–Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences 24, 629–42.CrossRefGoogle Scholar
Guo, Z. J., Zhang, Z. C., Liu, S. W. & Li, H. M. 2003. U–Pb geochronological evidence for the early Precambrian complex of the Tarim Craton, NW China. Acta Petrologica Sinica 19, 537–42 (in Chinese with English abstract).Google Scholar
Hacker, B. R. & Wang, Q. C. 1995. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics 14, 9941006.CrossRefGoogle Scholar
He, Y. H., Zhao, G. C., Sun, M. & Han, Y. G. 2010. Petrogenesis and tectonic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: constraints from bulk-rock geochemistry and Sr–Nd isotopic composition. Lithos 114, 186–99.CrossRefGoogle Scholar
He, Y. H., Zhao, G. Z., Sun, M. & Wilde, S. A. 2008. Geochemistry, isotope systematics and petrogenesis of the volcanic rocks in the Zhongtiao Mountain: an alternative interpretation for the evolution of the southern margin of the North China Craton. Lithos 102, 157–78.CrossRefGoogle Scholar
He, Y. H., Zhao, G. C., Sun, M. & Xia, X. P. 2009. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks: implications for the PaleoMesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research 168, 213–22.CrossRefGoogle Scholar
Hou, G., Santosh, M., Qian, X., Lister, G. S. & Li, J. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: insights from radiating mafic dyke swarms. Gondwana Research 14, 395409.CrossRefGoogle Scholar
Hou, K. J., Li, Y. H., Zou, T. R., Qu, X. M., Shi, Y. R. & Xie, G. Q. 2007. Laser ablation–MC–ICP –MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica 23 (10), 2595–604 (in Chinese with English abstract).Google Scholar
Hu, A. Q., Jahn, B. M., Zhang, G. X., Chen, Y. B. & Zhang, Q. F. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328, 1551.CrossRefGoogle Scholar
Hu, A. Q., Wei, G. J., Deng, W. F., Zhang, J. B. & Deng, L. L. 2006. 1.4 Ga SHRIMP U–Pb age for zircons of the granodiorite and its geological significance from the eastern segment of the Tianshan Mountains, Xinjiang, China. Geochemica 35, 333–45 (in Chinese with English abstract).Google Scholar
Hutton, D. H. W., Dempster, T. J., Brown, P. E. & Becker, S. D. 1990. A new mechanism of granite emplacement: intrusion into active extensional shear zones. Nature 343, 452–5.CrossRefGoogle Scholar
Jiang, N., Guo, J. H. & Zhai, M. G. 2011. Nature and origin of the Wenquan granite: Implications for the provenance of Proterozoic A-type granites in the North China craton. Journal of Asian Earth Sciences 42, 7682.CrossRefGoogle Scholar
Jiang, N., Guo, J. H., Zhai, M. G. & Zhang, S. Q. 2010. Similar to 2.7 Ga crust growth in the North China craton. Precambrian Research 179, 3749.CrossRefGoogle Scholar
Kaur, P., Chaudhri, N., Okrusch, M. & Koepke, J. 2006. Palaeoproterozoic A-type felsic magmatism in the Khetri Copper Belt, Rajasthan, northwestern India: petrologic and tectonic implications. Mineralogy and Petrology 87, 81122.CrossRefGoogle Scholar
Kaur, P., Chaudhri, N., Raczek, I., Kroner, A., Hofmann, A. W. & Okrusch, M. 2011. Zircon ages of late Palaeoproterozoic (ca. 1.72–1.70 Ga) extension-related granitoids in NE Rajasthan, India: Regional and tectonic significance. Gondwana Research 19, 1940–53.CrossRefGoogle Scholar
Kerr, A., Krogh, T. E., Corfu, F., Schärer, U., Gandhi, S. S. & Kwok, Y. Y. 1992. Episodic Early Proterozoic plutonism in the Makkovik province, Labrador: U–Pb geochronological data and geological implications. Canadian Journal of Earth Sciences 29, 1166–79.CrossRefGoogle Scholar
Ketchum, J. W. F., Barr, S. M., Culshaw, N. G. & White, C. E. 2001. U–Pb ages of granitoid rocks in the northwestern Makkovik province, Labrador: evidence for 175 million years of episodic synorogenic and postorogenic plutonism. Canadian Journal of Earth Sciences 38, 359–72.CrossRefGoogle Scholar
Kim, S. W., Oh, C. W., Ryu, I. C., Williams, I. S., Sajeev, K., Santosh, M. & Rajesh, V. J. 2006. Neoproterozoic bimodal volcanism in the Okcheon Belt, South Korea, and its comparison with the Nanhua Rift, South China: implications for rifting in Rodinia. Journal of Geology 114, 717–33.CrossRefGoogle Scholar
King, P. L., Chappell, B. W., Allen, C. M. & White, A. J. R. 2001. Are A-type granites the high temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences 48, 501–14.CrossRefGoogle Scholar
King, P. L., White, A. J. R., Chappell, B. W. & Allen, C. M. 1997. Characterization and origin of aluminous A-type granites fromthe Lachlan Fold Belt, Southeastern Australia. Journal of Petrology 38, 371–91.CrossRefGoogle Scholar
Kroner, A., Wilde, S. A., Li, J. H. & Wang, K. Y. 2005. Age and evolution of a late Archaean to early Palaeozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences 24, 577–95.CrossRefGoogle Scholar
Kroner, A., Wilde, S. A., Zhao, G. C., O'Brien, P. J., Sun, M., Liu, D. Y., Wan, Y. S., Liu, S. W. & Guo, J. H. 2006. Zircon geochronology of mafic dykes in the Hengshan Complex of northern China: evidence for late Paleoproterozoic extension and subsequent highpressure event in the North China Craton. Precambrian Research 146, 4567.CrossRefGoogle Scholar
Kusky, T. M. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research 20, 2635.CrossRefGoogle Scholar
Kusky, T. M., Li, J. H., Glass, A. & Huang, X. N. 2004. Origin and emplacement of Archean ophiolites of the Central Orogenic belt, North China Craton. In Precambrian Ophiolites and Related Rocks (ed. Kusky, T.M.), pp. 223–74. Amsterdam: Elsevier, Developments in Precambrian Geology, no. 13.CrossRefGoogle Scholar
Kusky, T., Li, J. H. & Santosh, M. 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's collisional suture with Columbia supercontinent. In Tectonic Evolution of China and Adjacent Crustal Fragments (eds Zhai, M. G., Xiao, W. J., , T. M. & Santosh, M.), Special Issue of Gondwana Research 12, 428.Google Scholar
Kusky, T. M., Li, J. H. & Tucker, R. D. 2001. The Archaean Dongwanzi ophiolite complex, North China craton: 2.505-billion-year-old oceanic crust and mantle. Science 292, 1142–5.CrossRefGoogle Scholar
Li, J. H. & Kusky, T. M. 2007. A late Archean foreland and thrust in the North China craton: implications for early collisional tectonics. Gondwana Research 12, 4766.CrossRefGoogle Scholar
Li, S. G., Xiao, Y. L., Liu, D. L., Chen, Y. Z., Ge, N. J., Zhang, Z. Q., Sun, S. S., Cong, B. L., Zhang, R. Y., Hart, S. R. & Wang, S. S. 1993. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites: timing and processes. Chemical Geology 109, 89111.CrossRefGoogle Scholar
Ling, W. L., Duan, R. C., Xie, X. J., Zhang, Y. Q., Zhang, J. B., Cheng, J. P., Liu, X. M. & Yang, H. M. 2009. Contrasting geochemistry of the Cretaceous volcanic suites in Shandong province and its implications for the Mesozoic lower crust delamination in the eastern North China craton. Lithos 113, 640–58.CrossRefGoogle Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. & Wang, D. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb datings, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology 51, 537–71.CrossRefGoogle Scholar
Loiselle, M. C. & Wones, D. R. 1979. Characteristics of anorogenic granites. Geological Society of America Abstracts with Programs 11, 468.Google Scholar
Long, X. P., Yuan, C., Sun, M., Kroner, A., Zhao, G. C., Wilde, S. & Hu, A. Q. 2011. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: evidence from Neoproterozoic granitoids in the Kuluketage area, NW China. Precambrian Research 187, 114.CrossRefGoogle Scholar
Long, X. P., Yuan, C., Sun, M., Zhao, G. C., Xiao, W. J., Wang, Y. J., Yang, Y. H. & Hu, A. Q. 2010. Archean crustal evolution of the northern Tarim Craton, NW China: zircon U–Pb and Hf isotopic constraints. Precambrian Research 180, 272–84.CrossRefGoogle Scholar
Lu, S. N., Li, H. K., Zhang, C. L. & Niu, G. H. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim craton and surrounding continental fragments. Precambrian Research 160, 94107.CrossRefGoogle Scholar
Lu, S. N. & Yuan, G. B. 2003. Geochronology of early Precambrian magmatic activities in Aketasdhtage, East Altyn tagh. Acta Geological Sinica 77, 61–8 (in Chinese with English abstract).Google Scholar
Ma, X. X., Shu, L. S., Santosh, M. & Li, J. Y. 2012. Detrital zircon U–Pb geochronology and Hf isotope data from Central Tianshan suggesting a link with the Tarim Block: implications on Proterozoic supercontinent history. Precambrian Research 207, 116.CrossRefGoogle Scholar
Mei, H. L., Yu, H. F. & Lu, S. N. 1998. Archean tonalite in the Dunhuang, Gusu Province: age from the U-Pb single zircon and Nd isotope. Progress in Precambrian Research 21, 41–5 (in Chinese with English abstract).Google Scholar
Meng, F., Zhang, J., Xiang, Z., Yu, S. & Li, J. 2011. Evolution and formation of the Dunhuang Group in NE Tarim basin, NW China: Evidence from detrital-zircon geochronology and Hf isotope. Acta Petrologica Sinica 27, 5976 (in Chinese with English abstract).Google Scholar
Miller, C. F., McDowell, S. M. & Mapes, R. W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31, 529–32.2.0.CO;2>CrossRefGoogle Scholar
Paudit, M. K. & Khatatneh, M. K. 1998. Geochemical constraints on anorogenic felsic plutonism in North Delhi Fold Belt, western India. Gondwana Research 2, 247–55.Google Scholar
Pearce, J. A. 1996. Sources and settings of granitic rocks. Episodes 19 (4), 120–25.CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Peng, P., Zhai, M. G., Ernst, R. E., Guo, J. H., Liu, F. & Hu, B. 2008. A 1.78 Ga large igneous province in the North China craton: the Xiong'er Volcanic Province and the North China dyke swarm. Lithos 101, 260–80.CrossRefGoogle Scholar
Peng, P., Zhai, M. G., Guo, J. H., Kusky, T. & Zhao, T. P. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China craton. Gondwana Research 12, 2946.CrossRefGoogle Scholar
Peng, P., Zhai, M. G., Zhang, H. F. & Guo, J. H. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China craton: SHRIMP zircon ages of different types of mafic dikes. International Geology Review 47, 492508.CrossRefGoogle Scholar
Polat, A., Li, J., Fryer, B., Kusky, T., Gagnon, J. & Zhang, S. 2006. Geochemical characteristics of the Neoarchean (2800–2700 Ma) Taishan greenstone belt, North China Craton: evidence for plume–craton interaction. Chemical Geology 230, 6087.CrossRefGoogle Scholar
Rogers, J. J. W. 2000. Origin and fragmentation of the possible approximately 1.5-Ga supercontinent Columbia. Abstracts with Programs, Geological Society of America 32, 455.Google Scholar
Rogers, J. J. W. & Santosh, M. 2002. Configuration of Columbia, a MesoProterozoic supercontinent. Gondwana Research 5, 522.CrossRefGoogle Scholar
Rogers, J. J. W. & Santosh, M. 2009. Tectonics and surface effects of the supercontinent Columbia. Gondwana Research 15, 373–80.CrossRefGoogle Scholar
Rowley, D. B., Xue, F., Tucker, R. D., Peng, Z. X., Baker, J. & Davis, A. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the Central Dabie Shan: U/Pb zircon geochronology. Earth and Planetary Science Letters 151, 191203.CrossRefGoogle Scholar
Santosh, M. 2010. Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction. Precambrian Research 178, 149–67.CrossRefGoogle Scholar
Santosh, M., Sajeev, K., Li, J. H., Liu, S. W. & Itaya, T. 2009. Counterclockwise exhumation of a hot orogen: the Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos 110, 140–52.CrossRefGoogle Scholar
Santosh, M., Wilde, S. A. & Li, J. H. 2007. Timing of Paleoproterozoic ultrahightemperature metamorphism in the North China Craton: evidence from SHRIMP U–Pb zircon geochronology. Precambrian Research 159, 178–96.CrossRefGoogle Scholar
Santosh, M., Zhao, D. & Kusky, T. 2010. Mantle dynamics of the Paleoproterozoic North China Craton: a perspective based on seismic tomography. Journal of Geodynamics 49, 3953.CrossRefGoogle Scholar
Schlerer, E., Muenker, C. & Klaus, M. 2001. Calibration of the lutetium–hafnium clock. Science 293, 683–7.CrossRefGoogle Scholar
Shu, L. S., Deng, X. L., Zhu, W. B., Ma, D. S. & Xiao, W. J. 2011. Precambrian tectonic evolution of the Tarim Block, NW China: new geochronological insights from the Quruqtagh domain. Journal of Asian Earth Sciences 42, 774–90.CrossRefGoogle Scholar
Shu, L. S., Wang, B. & Zhu, W. B., 2007. Age and tectonic significance of radiolarian fossils from the Heiyingshan ophiolitic mélange, southern Tianshan Belt, NW China. Acta Geologica Sinica 81, 18.Google Scholar
Sivaraman, T. V. & Raval, U. 1995. U–Pb isotopic study of zircons from a few granitoids of Delhi–Aravalli Belt. Journal of the Geological Society, India 46, 461–75.Google Scholar
Smith, D. R., Noblett, J., Wobus, R. A., Unruh, D., Douglass, J., Beane, R., Davis, C., Goldman, S., Kay, G., Gustavson, B., Saltoung, B. & Stewart, J. 1999. Petrology and geochemistry of late-stage intrusions of the A-type, mid-Proterozoic Pikes Peak batholith (Central Colorado, USA): implications for petrogenetic models. Precambrian Research 98, 271305.CrossRefGoogle Scholar
Song, B., Allen, P. N., Liu, D. Y. & Wu, J. S. 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research 78, 7994.CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Sauders, A. D. & Norry, M.J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Trap, P., Faure, M., Lin, W., Bruguier, O. & Monie, P. 2008. Contrasted tectonic styles for the Paleoproterozoic evolution of the North China Craton. Evidence for a 2.1 Ga thermal and tectonic event in the Fuping Massif. Journal of Structural Geology 30, 1109–25.CrossRefGoogle Scholar
Trap, P., Faure, M., Lin, W. & Monié, P. 2007. Late Paleoproterozoic (1900–1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: implications for the understanding of the Trans-North-China Belt, North China Craton. Precambrian Research 156, 85106.CrossRefGoogle Scholar
Trap, P., Faure, M., Lin, W., Monie, P., Meffre, S. & Melleton, J. 2009. The Zanhuang Massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research 172, 8098.CrossRefGoogle Scholar
Turner, S. P., Foden, J. D. & Morrison, R. S. 1992. Derivation of some Atype magmas by fractionation of basaltic magma: an example from the Pathaway Ridge, South Australia. Lithos 28, 151–79.CrossRefGoogle Scholar
Wan, Y. S., Liu, D. Y., Dong, C. Y., Xu, Z. Y., Wang, Z. J., Wilde, S. A., Yang, Y. H., Liu, Z. H. & Zhou, H. Y. 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic. In Palaeoproterozoic Supercontinents and Global Evolution (eds Reddy, S.M., Mazumder, R., Evans, D. A. D. & Collins, A. S.), pp. 7397. Geological Society of London, Special Publication no. 323.Google Scholar
Wan, Y. S., Liu, D. Y., Song, B., Wu, J. S., Yang, C. H., Zhang, Z. Q. & Geng, Y. S. 2005. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Sciences 24, 563–75.CrossRefGoogle Scholar
Wan, Y. S., Liu, D. Y., Wang, S. J., Dong, C. Y., Yang, E. X., Wang, W., Zhou, H. Y., Du, L. L., Yin, X. Y., Xie, H. Q. & Ma, M. Z. 2010. Juvenile magmatism and crustal recycling at the end of Neoarchean in western Shandong province, north China Craton: Evidence from SHRIMP zircon dating. American Journal of Science 310, 1503–52.CrossRefGoogle Scholar
Wan, Y. S., Liu, D. Y., Wang, W., Song, T. R., Kröner, A., Dong, C. Y., Zhou, H. Y. & Yin, X. Y. 2011. Provenance of Meso- to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton: an integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry. Gondwana Research 20, 219–42.CrossRefGoogle Scholar
Wan, Y. S., Liu, D. Y., Xu, M., Zhuang, J., Song, B., Shi, Y. R. & Du, L. L. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research 12, 166–83.CrossRefGoogle Scholar
Wan, Y. S., Wilde, S. A., Liu, D. Y., Yang, C. X., Song, B., Yin, X. Y. & Zhou, H. Y. 2006. Further evidence for c. 1.85 Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U–Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Research 9, 189–97.CrossRefGoogle Scholar
Wang, Q., Wyman, D. A., Li, Z. X., Bao, Z. W., Zhao, Z. H., Wang, Y. X., Jian, P., Yang, Y. H. & Chen, L. L. 2010. Petrology, geochronology and geochemistry of ca. 780Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Research 178, 185208.CrossRefGoogle Scholar
Wang, Y. J., Fan, W. M., Zhang, Y. H., Guo, F., Zhang, H. F. & Peng, T. P. 2004. Geochemical, 40Ar/39Ar geochronological and Sr–Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800Ma event of the North China Craton. Precambrian Research 135, 5577.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.CrossRefGoogle Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.CrossRefGoogle Scholar
Wilde, S. A. & Zhao, G. C. 2005. Archean to Paleoproterozoic evolution of the North China Craton. Journal of Asian Earth Sciences 24, 519–22.CrossRefGoogle Scholar
Wilde, S. A., Zhao, G. C. & Sun, M. 2002. Development of the North China Craton during the late Archaean and its final amalgamation at 1.8 Ga: some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research 5, 8594.CrossRefGoogle Scholar
Wu, F. Y., Sun, D. Y., Li, H., Jahn, B. M. & Wilde, S. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology 187, 143–73.CrossRefGoogle Scholar
Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J.H. & Xu, P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology 234, 105–26.CrossRefGoogle Scholar
Yakubchuk, A. 2010. Restoring the supercontinent Columbia and tracing its fragments after its breakup: A new configuration and a Super-Horde hypothesis. Journal of Geodynamics 50, 166–75.CrossRefGoogle Scholar
Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A. & Chu, M. F. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: geochemical and Sr–Nd–Hf isotopic evidence. Lithos 89, 89106.CrossRefGoogle Scholar
Yu, S. Y., Zhang, J. X., Li, H. K., Hou, K. J., Mattinson, C. G. & Gong, J. H. 2012. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP terrane: New evidence for deep continental subduction. Gondwana Research, doi:10.1016/j.gr.2012.07.018.Google Scholar
Zhai, M.G., Li, T. S., Peng, P., Hu, B., Liu, F., Zhang, Y. B. & Guo, J. H. 2010. Precambrian key tectonic events and evolution of the North China Craton. In The Evolving Continents (eds Kusky, T. M., Zhai, M. G. & Xiao, W. J.), pp. 235–62. Geological Society of London, Special Publication no. 338.Google Scholar
Zhai, M. G., Ni, Z. Y., Oh, C. W., Guo, J. H. & Cho, S. G. 2005. SHRIMP zircon age of a Proterozoic rapakivi granite batholith in the Gyeonggi massif (South Korea) and its geological implications. Geological Magazine 142, 2330.CrossRefGoogle Scholar
Zhai, M. G. & Santosh, M. 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research 20, 625.CrossRefGoogle Scholar
Zhang, C. L., Li, Z. X., Li, X. H. & Ye, H. M. 2007. Early Palaeoproterozoic high-K intrusive complex in southwestern Tarim Block, NW China: age, geochemistry and implications for the Paleoproterozoic tectonic evolution of Tarim. Gondwana Research 12, 101–12.CrossRefGoogle Scholar
Zhang, C. L., Li, H. K., Santosh, M., Li, Z. X., Zou, H. B., Wang, H. Y. & Ye, H. M. 2012. Precambrian evolution and cratonization of the Tarim Block, NW China: petrology, geochemistry, Nd-isotopes and U–Pb zircon geochronology from Archaean gabbro- TTG-potassic granite suite and Paleoproterozoic metamorphic belt. Journal of Asian Earth Sciences 47, 520.CrossRefGoogle Scholar
Zhang, C. L., Yang, D. S., Wang, H. Y., Takahashi, Y. & Ye, H. M. 2011. Neoproterozoic ultramficmafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: two phases of mafic igneous activity of different mantle sources. Gondwana Research 19, 177–90.CrossRefGoogle Scholar
Zhang, J. X., Gong, J. H. & Yu, S. Y. 2012. ~1.85 Ga HP Granulite facies metamorphism in the Dunhuang block of the Tarim Craton, NW China: evidence from zircon U-Pb datings of mafic granulites. Journal of the Geological Society 169, 511–14.CrossRefGoogle Scholar
Zhang, J. X., Yu, S. Y., Gong, J. H., Hou, K. J. & Li, H. K. 2013. The latest Neoarchean - Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: evidence from zircon U-Pb dating and Hf isotopic analyses. Precambrian Research, published online 14 November 2012. doi:org/10.1016/j.precamres.Google Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoi metamorphic event in South China. Precambrian Research 151, 265–88.CrossRefGoogle Scholar
Zhang, S. H., Liu, S. W., Zhao, Y., Yang, J. H., Song, B. & Liu, X. M. 2007. The 1.75–1.68 Ga anorthosite– mangerite–alkali granitoid-rapakivi granite suite from the northern North China Craton: magmatism related to a Paleoproterozoic orogen. Precambrian Research 155, 287312.CrossRefGoogle Scholar
Zhao, G. C., He, Y. H. & Sun, M. 2009. The Xiong'er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research 16, 170–81.CrossRefGoogle Scholar
Zhao, G. C., Sun, M. & Wilde, S. A. 2002 a. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59, 125–62.CrossRefGoogle Scholar
Zhao, G. C., Sun, M. & Wilde, S. A. 2003 a. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China 46, 2338.CrossRefGoogle Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2003 b. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: records in the North China Craton. Gondwana Research 6, 417–34.CrossRefGoogle Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Review 67, 91123.CrossRefGoogle Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136, 177202.CrossRefGoogle Scholar
Zhao, G. C., Sun, M., Wilde, S. A., Li, S. Z., Liu, S. W. & Zhang, H. 2006. Composite nature of the North China granulite-facies belt: tectonothermal and geochronological constraints. Gondwana Research 9, 337–48.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. 2002 b. SHRIMP U–Pb zircon ages of the Fuping Complex: implications for late Archean to Paleoproterozoic accretion and assembly of the North China Craton. American Journal of Science 302, 191226.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constrains and tectonic evolution. Precambrian Research 107, 4573.CrossRefGoogle Scholar
Zhao, G. C. & Zhai, M. G. 2012. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications, Gondwana Research, published online 16 August 2012. doi: 10.1016/j.gr.2012. 08.016.CrossRefGoogle Scholar
Zhao, T. P. & Zhou, M. F. 2009. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. Journal of Asian Earth Sciences 36, 183–95.CrossRefGoogle Scholar
Zheng, J. P., Griffin, W. L., O'reilly, S. Y., Lu, F. X., Wang, C. Y., Zhang, M., Wang, F. Z. & Li, H. M. 2004. 3.6 Ga lower crust in central China: new evidence on the assembly of the North China craton. Geology 33, 229–32.CrossRefGoogle Scholar
Zheng, Y. F., Fu, B., Li, Y. L., Xiao, Y. L. & Li, S. G. 1998. Oxygen and hydrogen isotope geochemistry of ultrahigh pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth and Planetary Science Letters 155, 113–29.CrossRefGoogle Scholar
Zheng, Y. F. & Zhang, S. B. 2007. Formation and evolution of Precambrian continental crust in South China. Chinese Science Bulletin 52, 112.CrossRefGoogle Scholar
Zhu, W. B., Zhang, Z. Z., Shu, L. S., Lu, H. F., Sun, J. B. & Yang, W. 2008. SHRIMP U–Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block, NW China: implications for the long-lasting breakup process of Rodinia. Journal of the Geological Society 165, 887–90.CrossRefGoogle Scholar
Zhu, W. B., Zheng, B., Shu, L., Ma, D., Wu, H., Li, Y., Huang, W. & Yu, J. 2011. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: insights from LA-ICPMS zircon U–Pb ages and geochemical data. Precambrian Research 185, 215–30.CrossRefGoogle Scholar
Zong, K., Zhang, Z., He, Z., Hu, Z., Santosh, M., Liu, Y. & Wang, W. 2012. Early Palaeozoic high-pressure granulites from the Dunhuang block, northeastern Tarim Craton: constraints on continental collision in the southern Central Asian Orogenic Belt. Journal of Metamorphic Geology, doi:10.1111/j.1525–1314.2012.00997.x. CrossRefGoogle Scholar