Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T13:38:39.835Z Has data issue: false hasContentIssue false

Photosynthetic potential of planets in 3 : 2 spin–orbit resonances

Published online by Cambridge University Press:  06 May 2014

S.P. Brown
Affiliation:
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK
A.J. Mead
Affiliation:
SUPA, Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
D.H. Forgan*
Affiliation:
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK SUPA, Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
J.A. Raven
Affiliation:
Division of Plant Sciences, University of Dundee at TJHI, The James Hutton Institute, Invergowrie, Dundee, UK
C.S. Cockell
Affiliation:
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK
*

Abstract

Photosynthetic life requires sufficient photosynthetically active radiation to metabolize. On Earth, plant behaviour, physiology and metabolism are sculpted around the night–day cycle by an endogenous biological circadian clock. The evolution of life was influenced by the Earth–Sun orbital dynamic, which generates the photo-environment incident on the planetary surface. In this work, the unusual photo-environment of an Earth-like planet (ELP) in 3 : 2 spin–orbit resonance is explored. Photo-environments on the ELP are longitudinally differentiated, in addition to differentiations related to latitude and depth (for aquatic organisms) which are familiar on Earth. The light environment on such a planet could be compatible with Earth's photosynthetic life although the threat of atmospheric freeze-out and prolonged periods of darkness would present significant challenges. We emphasize the relationship between the evolution of life on a planetary body with its orbital dynamics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, P.W., Flint, S.D. & Caldwell, M.M. (1987). Arct. Alp. Res. 19, 21.CrossRefGoogle Scholar
Bar-Even, A., Noor, E., Lewis, N.E. & Milo, R. (2010). Proc. Natl. Acad. Sci. USA 107, 88888894. doi:10.1073/pnas.090716107.Google Scholar
Beerling, D.J. & Osborne, C.P. (2002). Ann. Bot. 89, 329.Google Scholar
Berger, A., Mélice, J.L. & Loutre, M.F. (2005). Paleoceanography 20, PA4019.CrossRefGoogle Scholar
Biswas, S. (2000). Cosmic Perspectives in Space Physics. Astrophysics and Space Science Library. p. 176. Netherlands, Springer, ISBN 0-7923-5813-9.CrossRefGoogle Scholar
Björn, L.O., Papageorgiou, G.C., Blankenship, R.E. & Govindjee, (2009). Photosynth. Res. 99, 8599.CrossRefGoogle Scholar
Blank, C.E. & Sanchez-Baracaldo, P. (2010). Geobiology 8, 123.CrossRefGoogle Scholar
Brentall, S.J., Beerling, D.J., Osborne, C.P., Harland, M., Francis, J.E., Valdes, P.J. & Wittig, V.E. (2005). Global Change Biol. 11, 2177.Google Scholar
Britt, A.B. (1996). Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 75.Google Scholar
Caldeira, K. & Kasting, J.F. (1992). Nature 360, 721.CrossRefGoogle Scholar
Cockell, C.S. (1999). Icarus 141, 399.CrossRefGoogle Scholar
Cockell, C.S., Raven, J.A., Kaltenegger, L. & Logan, R.C. (2009). Plant Ecol. Divers. 2, 207.CrossRefGoogle Scholar
Correia, A.C.M. & Laskar, J. (2004). Nature 429, 848.CrossRefGoogle Scholar
Dartnell, L.R. (2011). Astrobiology 11(6), 551582.Google Scholar
Dobrovolskis, A. (2007). Icarus 192, 1.Google Scholar
Dobrovolskis, A. (2009). Icarus 204, 1.CrossRefGoogle Scholar
Dobrovolskis, A. (2013). Icarus 226, 760.Google Scholar
Dole, S.H. (1964). Habitable Planets for Man. Blaisdell, New York.Google Scholar
Dressing, C.D., Spiegel, D.S., Scharf, C.A., Menou, K. & Raymond, S.N. (2010). Astrophys. J. 721, 1295.Google Scholar
Edson, A.R., Sukyoung, L., Bannon, P., Kasting, J.F. & Pollard, D. (2011). Icarus 212, 1.CrossRefGoogle Scholar
Edson, A.R., Kasting, J.F., Pollard, D., Lee, S. & Bannon, P.R. (2012). Astrobiology 12, 562571.Google Scholar
Fabrycky, D. & Tremaine, S. (2007). Astrophys. J. 669, 1298.Google Scholar
Falkowski, P.G. & Raven, J.A. (2007). Aquatic Photosynthesis, 2nd edn, p. 48. Princeton University Press, Princeton, NJ, USA.Google Scholar
Flynn, K.J. & Mitra, A. (2009). J. Plankton Res. 9, 77.Google Scholar
Flynn, K.J., Stoecker, D.K., Mitra, A., Raven, J.A., Glibert, P.M., Hansen, P.J., Granéli, E. & Burkholder, J.M. (2012). J. Plankt. Res. 35, 311.Google Scholar
Fryxell, G.A. (1983). Survival Strategies of the Algae, p. 160. Cambridge University Press, Cambridge.Google Scholar
Hargraves, P.E. & French, F.W. (1983). Diatom resting spores: significance and strategies. In Survival strategies of the algae, ed. Fryxell, G.A., pp. 4968. Cambridge University Press, Cambridge.Google Scholar
Heller, R., Leconte, J. & Barnes, R. (2011). Astron. Astrophys., 528, A27.Google Scholar
Heath, M.J., Doyle, L.R., Joshi, M.M. & Haberle, R.M. (1999). Orig. Life Evol. Biosph. 29, 405424.Google Scholar
Hill, R. & Bendall, F.L. (1960). Nature 186, 137.Google Scholar
Hill, R. & Rich, P.R. (1983). Proc. Natl. Acad. Sci. USA 80, 978982.Google Scholar
Huang, S. (1959). Proc. Astron. Soc. Pacific 71, 421.Google Scholar
Jewson, D.H., Granin, N.G., Zhdanov, A.A., Gorbunova, L.A., Bondarenko, N.A. & Gnatovsky, R.Y. (2008). Limnol. Oceanogr. 53, 11251136.Google Scholar
Jones, R.I. (1994). Mar. Microb. Food Webs 8, 87.Google Scholar
Jones, H., Cockell, C.S., Goodson, C., Price, N., Simpson, A. & Thomas, B. (2009). Astrobiology 9, 563.CrossRefGoogle Scholar
Joshi, M. (2003). Astrobiology 3, 415.Google Scholar
Joshi, M.M., Haberle, R.M. & Reynolds, R.T. (1997). Icarus 129, 450.Google Scholar
Kane, S.R. & Gelino, D.M. (2012). Astrobiology 12, 946.CrossRefGoogle Scholar
Keafer, B.A. & Buesseler, K.O., Anderson, D.M. (1992). Mar. Micropaleontol. 20, 147161.Google Scholar
Kiang, N., Siefert, J., Govindjee, & Blankenship, R.E. (2007a). Astrobiology 7, 222.Google Scholar
Kiang, N., Segura, A., Tinetti, G. & Govindjee, (2007b). Astrobiology 7, 252.CrossRefGoogle Scholar
Kite, E.S., Gaidos, E., & Manga, M. (2011). Astrophys. J. 743, 41.Google Scholar
Kopparapu, R.K., Ramirez, R., Kasting, J.F., Eymet, V., Robinson, T.D., Mahadevan, S., Terrien, R.C., Domagal-Goldman, S., Meadows, V. & Deshpande, R. (2013). Astrophys. J. 765, 131.Google Scholar
Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P. & Yamauchi, M. (2009). Astron. Astrophys. Rev. 17, 181.CrossRefGoogle Scholar
Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J. & Weiss, W.W. (2003). Astrophys. J. 598, L121.Google Scholar
Lewis, J., Harris, A.S.D., Jones, K.J. & Edmonds, R.L. (1999). J. Plankton Res. 21, 343354.Google Scholar
Lovelock, J.E . & Whitfield, M. (1982). Nature 296, 561.Google Scholar
Margot, J.L., Peale, S.J., Solomon, S.C., Hauck, S.A. II, Ghigo, F.D., Jurgens, R.F., Yseboodt, M., Giorgini, J.D., Padovan, S. & Campbell, D.B. (2012). J. Geophys. Res. 117, E00L09.Google Scholar
Mayer, B., Kylling, A., Madronich, S. & Seckmeyer, G. (1998). J. Geophys. Res. 103, 241.Google Scholar
McDonald, M.S. (2003). Photobiology of Higher Plants, p. 354, John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, England.Google Scholar
McQuoid, M.R., Godhe, A. & Nordberg, K. (2002). Eur. J. Phycol. 37, 191201.Google Scholar
Merlis, T.M. & Schneider, T. (2010). J. Adv. Model. Earth Syst. 2(Art. 13), 17.Google Scholar
Milo, R. (2009). Photosyn. Res. 101, 59.CrossRefGoogle Scholar
Mizushima, K. & Matsuoka, K. (2004). Phycol. Res. 52, 408.Google Scholar
Moczydlowska, M. (2008). Precambrian Res. 167, 1.CrossRefGoogle Scholar
Park, Y., Chow, W.S. & Anderson, J.M. (1996). Plant Physiol. 11(1), 867875.CrossRefGoogle Scholar
Peale, S.J. (1988). The rotational dynamics of Mercury and the state of its core. In Mercury, ed. Vilas, F., Chapman, C.R. & Matthews, M.S., pp. 461493. University of Arizona Press, Tucson.Google Scholar
Prockter, L. (2005). Ice in the Solar System. Volume 26. Johns Hopkins APL Technical Digest. Retrieved 2009–07–27.Google Scholar
Puxley, P., Hippel, T., Takamiya, M. & Volk, K. (2008). Definition of an Astronomical Source in the ITC, Gemini Observatory. http://www.gemini.edu/nearirresources?q=node/10257.Google Scholar
Raven, J.A. (1997). Limnol. Oceanogr. 42, 198205.Google Scholar
Raven, J.A. (2011). Physiol. Plant 142, 87104.Google Scholar
Raven, J.A. (2009a). Funct. Plant Biol. 36, 505–51.Google Scholar
Raven, J.A., Beardall, J., Flynn, K.J. & Maberly, S.C. (2009b). J. Exp. Bot. 60, 39753987.Google Scholar
Raven, J.A. & Cockell, C.S. (2006). Astrobiology 6, 668–67.Google Scholar
Raven, J.A., KÏblerand, J.E. & Beardall, J. (2000). Mar. Biol. Assoc. UK 80, 125.Google Scholar
Raymond, S.N., Kokubo, E., Morbidelli, A., Morishima, R., Walsh, K.J., (2014). Terrestrial Planet Formation at Home and Abroad, in Protostars and Protoplanets VI, ed. Beuther, H., Klessen, R., Dullemond, C., Henning, Th., University of Arizona Press, Tucson.Google Scholar
Ribeiro, S., Berge, T., Lundholm, N., Andersen, T.J., Abrantes, F., Ellegaard, M. (2011). Nat. Commun. 2, 311.Google Scholar
Royer, D.L., Osborne, C.P. & Beerling, D.J. (2003). Nature 424, 60.Google Scholar
Ryves, B.D., Jewson, D.A., Sturm, M., Battarbee, R.N., Flower, R.J., Mackay, A.W. & Granin, N.G. (2003). Limnol. Oceanogr. 48, 1643.Google Scholar
Selsis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I. & Delfosse, X. (2007). Astron. Astrophys. 476, 1373.Google Scholar
Silvertown, J. (2004). Trends Ecol. Evol. 19, 605611.Google Scholar
Spiegel, D.S., Raymond, S.N., Dressing, C.D., Scharf, C.A. & Mitchell, J.L. (2010). Astrophys. J. 721, 1308.Google Scholar
Stomp, M., Huisman, J., Stal, L.J. & Matthijs, H.C.P. (2007). ISME J. 1, 271–28.Google Scholar
Thomas, B. & Vince-Prue, D. (1997). Photoperiodism in Plants. Academic Press, San Diego, CA.Google Scholar
Williams, D.M. & Pollard, D. (2002). Int. J. Astrobiol. 1, 61.Google Scholar
Wolstencroft, R.D. & Raven, J.A. (2002). Icarus 157, 535.Google Scholar
Yang, J., Cowan, N.B. & Abbot, D.S. (2013). Astrophys. J. 771, L45.Google Scholar