Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T19:25:25.354Z Has data issue: false hasContentIssue false

Determining the Origin of Inner Planetary System Debris Orbiting the Dustiest Main Sequence Stars

Published online by Cambridge University Press:  29 April 2014

Carl Melis
Affiliation:
Center for Astrophysics and Space Sciences, University of California, San Diego, California 92093-0424, USA; email: cmelis@ucsd.edu
B. Zuckerman
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547, USA
Joseph H. Rhee
Affiliation:
Department of Physics and Astronomy, California State Polytechnic University, Pomona, Pomona, California 91768, USA
Inseok Song
Affiliation:
Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA
S. J. Murphy
Affiliation:
Research School of Astronomy and Astrophysics, College of Mathematical and Physical Sciences, The Australian National University, Cotter Road, Weston Creek, Australian Capital Territory 2611, Australia
M. S. Bessell
Affiliation:
Research School of Astronomy and Astrophysics, College of Mathematical and Physical Sciences, The Australian National University, Cotter Road, Weston Creek, Australian Capital Territory 2611, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We develop a means to distinguish between warm dusty circumstellar debris disks produced by steady state collisional evolution of a planetesimal belt or through transient events.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Artymowicz, P. & Clampin, M. 1997, ApJ, 490, 863Google Scholar
Aumann, H. H., et al. 1984, ApJL, 278, L23Google Scholar
Backman, D. E. & Paresce, F. 1993, in Protostars and Planets III, edited by Levy, E. H. & Lunine, J. I., 1253–1304Google Scholar
Bromley, B. C. & Kenyon, S. J. 2006, AJ, 131, 2737CrossRefGoogle Scholar
Burns, J. A., Lamy, P. L., & Soter, S. 1979, Icarus, 40, 1Google Scholar
Chen, C. H. & Jura, M. 2001, ApJL, 560, L171CrossRefGoogle Scholar
Chen, C. H., et al. 2006, ApJS, 166, 351Google Scholar
Currie, T., Lada, C. J., Plavchan, P., Robitaille, T. P., Irwin, J., & Kenyon, S. J. 2009, ApJ, 698, 1Google Scholar
Jura, M., Ghez, A. M., White, R. J., McCarthy, D. W., Smith, R. C., & Martin, P. G. 1995, ApJ, 445, 451CrossRefGoogle Scholar
Kennedy, G. M. & Kenyon, S. J. 2008, ApJ, 682, 1264Google Scholar
Kenyon, S. J. & Bromley, B. C. 2006, AJ, 131, 1837Google Scholar
Melis, C., Zuckerman, B., Rhee, J. H., & Song, I. 2010, ApJL, 717, L57CrossRefGoogle Scholar
Melis, C., Zuckerman, B., Rhee, J. H., Song, I., Murphy, S. J., & Bessell, M. S. 2012, Nature, 487, 74Google Scholar
Morales, F. Y., et al. 2009, ApJ, 699, 1067CrossRefGoogle Scholar
Rhee, J. H., Song, I., & Zuckerman, B. 2007, ApJ, 671, 616Google Scholar
Rhee, J. H., Song, I., & Zuckerman, B. 2008, ApJ, 675, 777Google Scholar
Rodriguez, D. R. & Zuckerman, B. 2012, ApJ, 745, 147Google Scholar
Song, I., Zuckerman, B., Weinberger, A. J., & Becklin, E. E. 2005, Nature, 436, 363Google Scholar
Stewart, S. T. & Leinhardt, Z. M. 2012, ApJ, 751, 32Google Scholar
Wyatt, M. C., Smith, R., Greaves, J. S., Beichman, C. A., Bryden, G., & Lisse, C. M. 2007, ApJ, 658, 569Google Scholar
Zuckerman, B., Forveille, T., & Kastner, J. H. 1995, Nature, 373, 494CrossRefGoogle Scholar
Zuckerman, B., Melis, C., Rhee, J. H., Schneider, A., & Song, I. 2012, ApJ, 752, 58Google Scholar
Zuckerman, B. & Song, I. 2012, ApJ, 758, 77Google Scholar