Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T14:05:08.992Z Has data issue: false hasContentIssue false

Laminar Accretion in the Habitable Zone of Protoplanetary Disks

Published online by Cambridge University Press:  29 April 2014

Xue-Ning Bai
Affiliation:
Department of Astrophysical Sciences, Peyton Hall, Princeton, NJ 08540, USA
James M. Stone
Affiliation:
Department of Astrophysical Sciences, Peyton Hall, Princeton, NJ 08540, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Protoplanetary disks (PPDs) are widely believed to be turbulent as a result of the magnetorotational instability (MRI). We perform magnetohydrodynamical simulations of PPDs that for the first time, take into account both Ohmic resistivity and ambipolar diffusion in a self-consistent manner. We show that in the inner region of PPDs that corresponds the habitable zone, the MRI is completely suppressed due to the interplay between magnetic field and ambipolar diffusion. The gas in this region is laminar throughout the entire vertical extent of the disk. Instead of MRI-driven accretion, a strong magnetocentrifugal wind is launched that efficiently carries away disk angular momentum. A physical wind geometry requires the presence of a strong current layer that is offset from the disk midplane where horizontal magnetic fields flip. We show that the entire accretion flow proceeds through this strong current layer. The non-turbulent nature of the gas flow strongly favors the habitable zone as the site for planetesimal formation, and has important implications for their subsequent growth into terrestrial planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bai, X.-N. 2011a, ApJ, 739, 50Google Scholar
Bai, X.-N. 2011b, ApJ, 739, 51CrossRefGoogle Scholar
Bai, X.-N. & Goodman, J. 2009, ApJ, 701, 737CrossRefGoogle Scholar
Bai, X.-N. & Stone, J. M. 2011, ApJ, 736, 144Google Scholar
Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214CrossRefGoogle Scholar
Blandford, R. D. & Payne, D. G. 1982, MNRAS, 199, 883Google Scholar
Combet, C. & Ferreira, J. 2008, A&A, 479, 481Google Scholar
Ferreira, J. & Pelletier, G. 1995, A&A, 295, 807Google Scholar
Fleming, T. & Stone, J. M. 2003, ApJ, 585, 908CrossRefGoogle Scholar
Hartigan, P., Edwards, S., & Ghandour, L. 1995, ApJ, 452, 736Google Scholar
Hartmann, L., Calvet, N., Gullbring, E., & D'Alessio, P. 1998, ApJ, 495, 385Google Scholar
Ilgner, M. & Nelson, R. P. 2006, A&A, 445, 205Google Scholar
Königl, A., Salmeron, R., & Wardle, M. 2010, MNRAS, 401, 479CrossRefGoogle Scholar
Kunz, M. W. & Balbus, S. A. 2004, MNRAS, 348, 355CrossRefGoogle Scholar
Okuzumi, S. & Hirose, S. 2011, ApJ, 742, 65CrossRefGoogle Scholar
Pandey, B. P. & Wardle, M. 2012, MNRAS, 423, 222CrossRefGoogle Scholar
Perez-Becker, D. & Chiang, E. 2011, ApJ, 735, 8Google Scholar
Sano, T. & Stone, J. M. 2002, ApJ, 577, 534Google Scholar
Turner, N. J. & Sano, T. 2008, ApJ Letter, 679, L131Google Scholar
Wardle, M. & Koenigl, A. 1993, ApJ, 410, 218Google Scholar
Weidenschilling, S. J. 1977, Ap&SS, 51, 153Google Scholar