Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T04:50:39.061Z Has data issue: false hasContentIssue false

Planetesimal Formation in Zonal Flows Arising in Magneto-Rotationally-Unstable Protoplanetary Disks

Published online by Cambridge University Press:  29 April 2014

Karsten Dittrich
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: dittrich@mpia.de, klahr@mpia.de
Hubert Klahr
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: dittrich@mpia.de, klahr@mpia.de
Anders Johansen
Affiliation:
Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, 221 00 Lund, Sweden email: anders@astro.lu.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent simulations show long -lived sub- and super-Keplerian flows in protoplanetary disks. These so-called zonal flows are found in local as well as global simulations of magneto-rotationally unstable disks. We investigate the strength and life-time of the resulting long-lived gas over- and under-densities as well as particle concentrations function of the azimuthal and radial size of the local shearing box. Changes in the azimuthal extent do not affect the zonal flow features. However, strength and life-time of zonal flows increase with increasing radial box sizes. Our simulations show indications, and support earlier results, that zonal flows have a natural length scale of approximately 5 pressure scale heights. For the first time, the reaction of dust particles in boxes with zonal flows are studied. We show that particles of some centimeters in size reach a hundred-fold higher density than initially, without any self-gravitating forces acting on the point masses. We further investigate collision velocities of dust grains in a turbulent medium.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214Google Scholar
Balbus, S. A. & Hawley, J. F. 1998, Reviews of Modern Physics, 70, 1Google Scholar
Brandenburg, A., Nordlund, A., Stein, R. F., & Torkelsson, U. 1995, ApJ, 446, 741Google Scholar
Chapman, S. & Cowling, T. G. 1970, Cambridge: University Press, 1970, 3rd ed.Google Scholar
Dittrich, K., Klahr, H., & Johansen, A. 2013, ApJ, 763, 117CrossRefGoogle Scholar
Flock, M., Dzyurkevich, N., Klahr, H., Turner, N. J., & Henning, T. 2011, ApJ, 735, 122Google Scholar
Fromang, S. & Stone, J. M. 2009, A&A, 507, 19Google Scholar
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007, Nature, 448, 1022CrossRefGoogle Scholar
Johansen, A. & Youdin, A. 2007, ApJ, 662, 627CrossRefGoogle Scholar
Johansen, A. 2009, IAU Symposium, 259, 249Google Scholar
Johansen, A., Youdin, A., & Klahr, H. 2009, ApJ, 697, 1269Google Scholar
Johansen, A., Youdin, A., & Mac Low, M.-M. 2009, ApJ 1, 704, L75Google Scholar
Kopal, Z. 1989, Astrophysics and Space Science Library, 152Google Scholar
Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2008, A&A, 479, 883Google Scholar
Nakagawa, Y., Sekiya, M., & Hayashi, C. 1986, Icarus, 67, 375CrossRefGoogle Scholar
Pinilla, P., Birnstiel, T., Ricci, L., et al. 2012, A&A, 538, A114Google Scholar
Stone, J. M. & Gardiner, T. A. 2010, ApJS, 189, 142Google Scholar
Weidenschilling, S. J. 1977, MNRAS, 180, 57Google Scholar
Whipple, F. L. 1972, From Plasma to Planet, 211Google Scholar
Youdin, A. & Johansen, A. 2007, ApJ, 662, 613CrossRefGoogle Scholar