Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T20:14:13.029Z Has data issue: false hasContentIssue false

Liquid Scanning Transmission Electron Microscopy: Imaging Protein Complexes in their Native Environment in Whole Eukaryotic Cells

Published online by Cambridge University Press:  19 February 2014

Diana B. Peckys
Affiliation:
Leibniz Institute for New Materials (INM), 66123 Saarbrücken, Germany
Niels de Jonge*
Affiliation:
Leibniz Institute for New Materials (INM), 66123 Saarbrücken, Germany Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
*
*Corresponding author. niels.dejonge@inm-gmbh.de
Get access

Abstract

Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.

Type
In Situ Special Section
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaron, J., Travis, K., Harrison, N. & Sokolov, K. (2009). Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling. Nano Lett 9, 36123618.Google Scholar
Agronskaia, A.V., Valentijn, J.A., van Driel, L.F., Schneijdenberg, C.T., Humbel, B.M., van Bergen en Henegouwen, P.M., Verkleij, A.J., Koster, A.J. & Gerritsen, H.C. (2008). Integrated fluorescence and transmission electron microscopy. J Struct Biol 164, 183189.Google Scholar
Allison, D.P., Mortensen, N.P., Sullivan, C.J. & Doktycz, M.J. (2010). Atomic force microscopy of biological samples. WIREs Nanomed Nanobiotechnol 2, 618634.Google Scholar
Arkhipov, A., Shan, Y., Das, R., Endres, N.F., Eastwood, M.P., Wemmer, D.E., Kuriyan, J. & Shaw, D.E. (2013). Architecture and membrane interactions of the EGF receptor. Cell 152, 557569.Google Scholar
Bader, A.N., Hofman, E.G., Voortman, J., en Henegouwen, P.M. & Gerritsen, H.C. (2009). Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97, 26132622.Google Scholar
Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. (2007). Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 17491753.CrossRefGoogle ScholarPubMed
Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J. & Hess, H.F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 16421645.Google Scholar
Blakely, B.T., Rossi, F.M., Tillotson, B., Palmer, M., Estelles, A. & Blau, H.M. (2000). Epidermal growth factor receptor dimerization monitored in live cells. Nat Biotechnol 18, 218222.Google Scholar
Bogner, A., Thollet, G., Basset, D., Jouneau, P.H. & Gauthier, C. (2005). Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290301.Google Scholar
Bozzola, J.J. & Russell, L.D. (1999). Electron Microscopy Principles and Techniques for Biologists. Boston: Jones and Barlett Publishers.Google Scholar
Brandenberger, C., Muhlfeld, C., Ali, Z., Lenz, A.G., Schmid, O., Parak, W.J., Gehr, P. & Rothen-Rutishauser, B. (2010). Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6, 16691678.Google Scholar
Bright, N.A., Reaves, B.J., Mullock, B.M. & Luzio, J.P. (1997). Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J Cell Sci 110(Pt 17), 20272040.Google Scholar
Bushby, A.J., P’Ng, K.M., Young, R.D., Pinali, C., Knupp, C. & Quantock, A.J. (2011). Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat Protoc 6, 845858.Google Scholar
Chithrani, B.D., Ghazani, A.A. & Chan, W.C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6, 662668.Google Scholar
Chung, I., Akita, R., Vandlen, R., Toomre, D., Schlessinger, J. & Mellman, I. (2010). Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464, 783787.CrossRefGoogle ScholarPubMed
Citri, A. & Yarden, Y. (2006). EGF-ERBB signalling: Towards the systems level. Nat Rev Mol Cell Biol 7, 505516.Google Scholar
Coffman, V.C. & Wu, J.Q. (2012). Counting protein molecules using quantitative fluorescence microscopy. Trends Biochem Sci 37, 499506.CrossRefGoogle ScholarPubMed
Colliex, C., Jeanguillaume, C. & Mory, C. (1984). Unconventional modes for STEM imaging of biological structures. J Ultra Mol Struct R 88, 177206.Google Scholar
Coskun, U. & Simons, K. (2011). Cell membranes: The lipid perspective. Structure 19, 15431548.Google Scholar
Crewe, A.V., Wall, J. & Langmore, J. (1970). Visibility of single atoms. Science 168, 13381340.Google Scholar
Davis, M.E., Chen, Z.G. & Shin, D.M. (2008). Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 7, 771782.Google Scholar
de Jonge, N. (2010). System and methods for live cell transmission electron microscopy. Provisional US Patent 61,414,603.Google Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci 106, 21592164.Google Scholar
de Jonge, N., Peckys, D.B., Veith, G.M., Mick, S., Pennycook, S.J. & Joy, C.S. (2007). Scanning transmission electron microscopy of samples in liquid (liquid STEM). Microsc Microanal 13(Suppl 2), 242243.Google Scholar
de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D.B. & Drouin, D. (2010). Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110, 11141119.Google Scholar
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695704.Google Scholar
Demers, H., Poirier-Demers, N., Drouin, D. & de Jonge, N. (2010). Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc Microanal 16, 795804.Google Scholar
Demers, H., Ramachandra, R., Drouin, D. & de Jonge, N. (2012). The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens. Microsc Microanal 18, 582590.Google Scholar
Dukes, M.J., Peckys, D.B. & de Jonge, N. (2010). Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano 4, 41104116.CrossRefGoogle ScholarPubMed
Elsaesser, A., Taylor, A., de Yanes, G.S., McKerr, G., Kim, E.M., O’Hare, E. & Howard, C.V. (2010). Quantification of nanoparticle uptake by cells using microscopical and analytical techniques. Nanomedicine 5, 14471457.CrossRefGoogle ScholarPubMed
Endres, N.F., Das, R., Smith, A.W., Arkhipov, A., Kovacs, E., Huang, Y., Pelton, J.G., Shan, Y., Shaw, D.E., Wemmer, D.E., Groves, J.T. & Kuriyan, J. (2013). Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152, 543556.Google Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.Google Scholar
Evans, J.E., Jungjohann, K.L., Wong, P.C.K., Chiu, P.L., Dutrow, G.H., Arslan, I. & Browning, N.D. (2012). Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy. Micron 43, 10851090.Google Scholar
Frank, J. (2006). Three-Dimensional Electron Microscopy of Macromolecular Assemblies-Visualization of Biological Molecules in Their Native State. Oxford: Oxford University Press.CrossRefGoogle Scholar
Franks, R., Morefield, S., Wen, J., Liao, D., Alvarado, J., Strano, M. & Marsh, C. (2008). A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy. J Nanosci Nanotechnol 8, 44044407.CrossRefGoogle ScholarPubMed
Fujimoto, K. (1995). Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108(Pt 11), 34433449.Google Scholar
Fujita, A., Cheng, J. & Fujimoto, T. (2010). Quantitative electron microscopy for the nanoscale analysis of membrane lipid distribution. Nat Protoc 5, 661669.Google Scholar
Fujita, A., Cheng, J., Hirakawa, M., Furukawa, K., Kusunoki, S. & Fujimoto, T. (2007). Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18, 21122122.Google Scholar
Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Sosinsky, G.E., Tsien, R.Y. & Ellisman, M.H. (2002). Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503507.Google Scholar
Giepmans, B.N., Deerinck, T.J., Smarr, B.L., Jones, Y.Z. & Ellisman, M.H. (2005). Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat Meth 2, 743749.Google Scholar
Gilmore, B.L., Showalter, S.P., Dukes, M.J., Tanner, J.R., Demmert, A.C., McDonald, S.M. & Kelly, D.F. (2013). Visualizing viral assemblies in a nanoscale biosphere. Lab Chip 13, 216219.Google Scholar
Glavinovic, M.I., Vitale, M.L. & Trifaro, J.M. (1998). Comparison of vesicular volume and quantal size in bovine chromaffin cells. Neuroscience 85, 957968.Google Scholar
Grogan, J.M. & Bau, H.H. (2010). The nanoaquarium: A platform for in situ transmission electron microscopy in liquid media. J Microelectromech S 19, 885894.Google Scholar
Hahn, M.A., Singh, A.K., Sharma, P., Brown, S.C. & Moudgil, B.M. (2011). Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. Anal Bioanal Chem 399, 327.Google Scholar
Hainfeld, J.F. & Powell, R.D. (2000). New frontiers in gold labeling. J Histochem Cytochem 48, 471480.Google Scholar
Hanahan, D. & Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 5770.Google Scholar
Hell, S.W. (2007). Far-field optical nanoscopy. Science 316, 11531158.CrossRefGoogle ScholarPubMed
Henjes, F., Bender, C., von der Heyde, S., Braun, L., Mannsperger, H.A., Schmidt, C., Wiemann, S., Hasmann, M., Aulmann, S., Beissbarth, T. & Korf, U. (2012). Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs. Oncogenesis 1, e16.Google Scholar
Herbert, S., Soares, H., Zimmer, C. & Henriques, R. (2012). Single-molecule localization super-resolution microscopy: Deeper and faster. Microsc Microanal 18, 14191429.CrossRefGoogle ScholarPubMed
Hoenger, A. & Bouchet-Marquis, C. (2011). Cellular tomography. Adv Protein Chem Struct Biol 82, 6790.Google Scholar
Hoenger, A. & McIntosh, J.R. (2009). Probing the macromolecular organization of cells by electron tomography. Curr Opin Cell Biol 21, 8996.Google Scholar
Hohmann-Marriott, M.F., Sousa, A.A., Azari, A.A., Glushakova, S., Zhang, G., Zimmerberg, J. & Leapman, R.D. (2009). Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Methods 6, 729731.Google Scholar
Holtz, M.E., Yu, Y., Gao, J., Abruna, H.D. & Muller, D.A. (2013). In situ electron energy-loss spectroscopy in liquids. Microsc Microanal 19, 10271035.Google Scholar
Huang, T.W., Liu, S.Y., Chuang, Y.J., Hsieh, H.Y., Tsai, C.Y., Huang, Y.T., Mirsaidov, U., Matsudaira, P., Tseng, F.G., Chang, C.S. & Chen, F.R. (2012). Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip 12, 340347.Google Scholar
Hyun, J.K., Ercius, P. & Muller, D.A. (2008). Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109, 17.CrossRefGoogle ScholarPubMed
Joy, D.C. & Joy, C.S. (2005). Scanning electron microscope imaging in liquids—some data on electron interactions in water. J Microsc 221, 8499.Google Scholar
Kirk, S.E., Skepper, J.N. & Donald, A.M. (2009). Application of environmental scanning electron microscopy to determine biological surface structure. J Microsc 233, 205224.Google Scholar
Klein, K.L., Anderson, I.M. & de Jonge, N. (2011). Transmission electron microscopy with a liquid flow cell. J Microsc 242, 117123.CrossRefGoogle ScholarPubMed
Kourkoutis, L.F., Plitzko, J.M. & Baumeister, W. (2012). Electron microscopy of biological materials at the nanometer scale. Annu Rev Mater Res 42, 3358.Google Scholar
Larabell, C.A. & Nugent, K.A. (2010). Imaging cellular architecture with X-rays. Curr Opin Struct Biol 20, 623631.Google Scholar
Leis, A., Rockel, B., Andrees, L. & Baumeister, W. (2009). Visualizing cells at the nanoscale. Trends Biochem Sci 34, 6070.Google Scholar
Leonard, D., Hayakawa, A., Lawe, D., Lambright, D., Bellve, K.D., Standley, C., Lifshitz, L.M., Fogarty, K.E. & Corvera, S. (2008). Sorting of EGF and transferrin at the plasma membrane and by cargo-specific signaling to EEA1-enriched endosomes. J Cell Sci 121, 34453458.CrossRefGoogle ScholarPubMed
Lidke, D.S. & Lidke, K.A. (2012). Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures. J Cell Sci 125, 25712580.Google Scholar
Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H.E., Jares-Erijman, E.A. & Jovin, T.M. (2004). Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22, 198203.Google Scholar
Lillemeier, B.F., Pfeiffer, J.R., Surviladze, Z., Wilson, B.S. & Davis, M.M. (2006). Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci 103, 1899218997.Google Scholar
Lippincott-Schwartz, J. & Manley, S. (2009). Putting super-resolution fluorescence microscopy to work. Nat Meth 6, 2123.Google Scholar
Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. (2001). Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2, 444456.Google Scholar
Liu, K.L., Wu, C.C., Huang, Y.J., Peng, H.L., Chang, H.Y., Chang, P., Hsu, L. & Yew, T.R. (2008). Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 19151921.Google Scholar
Liv, N., Zonnevylle, A.C., Narvaez, A.C., Effting, A.P., Voorneveld, P.W., Lucas, M.S., Hardwick, J.C., Wepf, R.A., Kruit, P. & Hoogenboom, J.P. (2013). Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLoS One 8, e55707.Google Scholar
Loos, J., Sourty, E., Lu, K., Freitag, B., Tang, D. & Wall, D. (2009). Electron tomography on micrometer-thick specimens with nanometer resolution. Nano Lett 9, 17041708.Google Scholar
Mackay, J.P., Sunde, M., Lowry, J.A., Crossley, M. & Matthews, J.M. (2007). Protein interactions: Is seeing believing? Trends Biochem Sci 32, 530531.Google Scholar
Matricardi, V.R., Moretz, R.C. & Parsons, D.F. (1972). Electron diffraction of wet proteins: Catalase. Science 177, 268270.Google Scholar
Mayhew, T.M., Muhlfeld, C., Vanhecke, D. & Ochs, M. (2009). A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann Anat 191, 153170.Google Scholar
McDonald, K.L. (2009). A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J Microsc 235, 273281.Google Scholar
Medalia, O., Weber, I., Frangakis, A.S., Nicastro, D., Gerisch, G. & Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 12091213.Google Scholar
Mirsaidov, U.M., Zheng, H., Casana, Y. & Matsudaira, P. (2012). Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys J 102, L15L17.Google Scholar
Mohanty, N., Fahrenholtz, M., Nagaraja, A., Boyle, D. & Berry, V. (2011). Impermeable graphenic encasement of bacteria. Nano Lett 11, 12701275.Google Scholar
Moiseenkova-Bell, V.Y. & Wensel, T.G. (2009). Hot on the trail of TRP channel structure. J Gen Physiol 133, 239244.Google Scholar
Montell, C., Birnbaumer, L. & Flockerzi, V. (2002). The TRP channels, a remarkably functional family. Cell 108, 595598.Google Scholar
Mueller, S.A. & Engel, A. (2006). Biological scanning transmission electron microscopy: Imaging and single molecule mass determination. Chimia 60, 749753.Google Scholar
Nagy, P., Claus, J., Jovin, T.M. & Arndt-Jovin, D.J. (2010). Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. Proc Natl Acad Sci 107, 1652416529.Google Scholar
Nawa, Y., Inami, W., Chiba, A., Ono, A., Miyakawa, A., Kawata, Y., Lin, S. & Terakawa, S. (2012). Dynamic and high-resolution live cell imaging by direct electron beam excitation. Opt Express 20, 56295635.Google Scholar
Nishiyama, H., Suga, M., Ogura, T., Maruyama, Y., Koizumi, M., Mio, K., Kitamura, S. & Sato, C. (2010). Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J Struct Biol 169, 438449.Google Scholar
Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M.R., Carotenuto, A., De Feo, G., Caponigro, F. & Salomon, D.S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 216.Google Scholar
Oorschot, V., de Wit, H., Annaert, W.G. & Klumperman, J. (2002). A novel flat-embedding method to prepare ultrathin cryosections from cultured cells in their in situ orientation. J Histochem Cytochem 50, 10671080.Google Scholar
Parsons, D.F. (1974). Structure of wet specimens in electron microscopy. Science 186, 407414.CrossRefGoogle ScholarPubMed
Parsons, D.F., Matricardi, V.R., Moretz, R.C. & Turner, J.N. (1974). Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv Biol Med Phys 15, 161270.Google Scholar
Pawley, J.B. (1995). Handbook of Biological Confocal Microscopy. New York: Springer.Google Scholar
Peckys, D.B., Baudoin, J.-P., Eder, M., Werner, U. & de Jonge, N. (2013 a). Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci Rep 3, 2626.Google Scholar
Peckys, D.B., Baudoin, J.P., Eder, M., Werner, U. & de Jonge, N. (2013 b). Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci Rep 3, 2626.Google Scholar
Peckys, D.B. & de Jonge, N. (2011 a). Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy. Nano Lett 11, 17331738.CrossRefGoogle Scholar
Peckys, D.B. & de Jonge, N. (2011 b). Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett 11, 17331738.Google Scholar
Peckys, D.B., Mazur, P., Gould, K.L. & de Jonge, N. (2011). Fully hydrated yeast cells imaged with electron microscopy. Biophys J 100, 25222529.Google Scholar
Peckys, D.B., Veith, G.M., Joy, D.C. & de Jonge, N. (2009). Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One 4, e8214.Google Scholar
Pierson, J., Sani, M., Tomova, C., Godsave, S. & Peters, P.J. (2009). Toward visualization of nanomachines in their native cellular environment. Histochem Cell Biol 132, 253262.Google Scholar
Ramachandra, R., Demers, H. & de Jonge, N. (2013). The influence of the sample thickness on the lateral and axial resolution of aberration-corrected scanning transmission electron microscopy. Microsc Microanal 19, 93101.Google Scholar
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation. New York: Springer.Google Scholar
Ring, E.A. & de Jonge, N. (2010). Microfluidic system for transmission electron microscopy. Microsc Microanal 16, 622629.Google Scholar
Ring, E.A. & de Jonge, N. (2012). Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron 43, 10781084.Google Scholar
Ring, E.A., Peckys, D.B., Dukes, M.J., Baudoin, J.P. & de Jonge, N. (2011). Silicon nitride windows for electron microscopy of whole cells. J Microsc 243, 273283.Google Scholar
Risco, C., Sanmartin-Conesa, E., Tzeng, W.P., Frey, T.K., Seybold, V. & de Groot, R.J. (2012). Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy. Structure 20, 759766.Google Scholar
Robinson, C.V., Sali, A. & Baumeister, W. (2007). The molecular sociology of the cell. Nature 450, 973982.Google Scholar
Rose, A. (1948). Television pickup tubes and the problem of noise. Adv Electron 1, 131166.Google Scholar
Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. (2003). From words to literature in structural proteomics. Nature 422, 216225.Google Scholar
Schlessinger, J. (1988). Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 13, 443447.Google Scholar
Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. (2008). Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Meth 5, 417423.Google Scholar
Shu, X., Lev-Ram, V., Deerinck, T.J., Qi, Y., Ramko, E.B., Davidson, M.W., Jin, Y., Ellisman, M.H. & Tsien, R.Y. (2011). A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9, e1001041.Google Scholar
Siegwart, D.J., Srinivasan, A., Bencherif, S.A., Karunanidhi, A., Oh, J.K., Vaidya, S., Jin, R., Hollinger, J.O. & Matyjaszewski, K. (2009). Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. Biomacromolecules 10, 23002309.Google Scholar
Sousa, A.A., Aronova, M.A., Kim, Y.C., Dorward, L.M., Zhang, G. & Leapman, R.D. (2007). On the feasibility of visualizing ultrasmall gold labels in biological specimens by STEM tomography. J Struct Biol 159, 507522.Google Scholar
Sousa, A.A., Azari, A.A., Zhang, G. & Leapman, R.D. (2011). Dual-axis electron tomography of biological specimens: Extending the limits of specimen thickness with bright-field STEM imaging. J Struct Biol 174, 107114.Google Scholar
Sousa, A.A., Hohmann-Marriott, M.F., Zhang, G. & Leapman, R.D. (2009). Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: Implications for tomography of thick biological sections. Ultramicroscopy 109, 213221.Google Scholar
Sousa, A.A. & Leapman, R.D. (2012). Development and application of STEM for the biological sciences. Ultramicroscopy 123, 3849.Google Scholar
Spirin, V. & Mirny, L.A. (2003). Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci 100, 1212312128.Google Scholar
Stahlberg, H. & Walz, T. (2008). Molecular electron microscopy: State of the art and current challenges. ACS Chem Biol 3, 268281.Google Scholar
Stokes, D.L. (2008). Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-SEM). Chichester, West-Sussex: Wiley.Google Scholar
Tanaka, K.A., Suzuki, K.G., Shirai, Y.M., Shibutani, S.T., Miyahara, M.S., Tsuboi, H., Yahara, M., Yoshimura, A., Mayor, S., Fujiwara, T.K. & Kusumi, A. (2010). Membrane molecules mobile even after chemical fixation. Nat Methods 7, 865866.Google Scholar
Tantra, R. & Knight, A. (2011). Cellular uptake and intracellular fate of engineered nanoparticles: A review on the application of imaging techniques. Nanotoxicology 5, 381392.Google Scholar
Tantra, R. & Shard, A. (2013). We need answers. Nat Nanotechnol 8, 71.Google Scholar
Thiberge, S., Nechushtan, A., Sprinzak, D., Gileadi, O., Behar, V., Zik, O., Chowers, Y., Michaeli, S., Schlessinger, J. & Moses, E. (2004). Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci 101, 33463351.Google Scholar
Tynan, C.J., Roberts, S.K., Rolfe, D.J., Clarke, D.T., Loeffler, H.H., Kastner, J., Winn, M.D., Parker, P.J. & Martin-Fernandez, M.L. (2011). Human epidermal growth factor receptor (EGFR) aligned on the plasma membrane adopts key features of Drosophila EGFR asymmetry. Mol Cell Biol 31, 22412252.Google Scholar
Ulbrich, M.H. & Isacoff, E.Y. (2007). Subunit counting in membrane-bound proteins. Nat Meth 4, 319321.Google Scholar
Ullrich, A. & Schlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203212.Google Scholar
Venkatachalam, K. & Montell, C. (2007). TRP channels. Ann Rev Biochem 76, 387417.Google Scholar
Wang, J., Boriskina, S.V., Wang, H.Y. & Reinhard, B.M. (2011). Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling. ACS Nano 5, 66196628.Google Scholar
Webster, P., Schwarz, H. & Griffiths, G. (2008). Preparation of cells and tissues for immuno EM. Methods Cell Biol 88, 4558.Google Scholar
Westphal, V., Rizzoli, S.O., Lauterbach, M.A., Kamin, D., Jahn, R. & Hell, S.W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246249.Google Scholar
White, E.R., Mecklenburg, M., Shevitski, B., Singer, S.B. & Regan, B.C. (2012). Charger nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28, 36953698.Google Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2, 532536.Google Scholar
Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R. & Hell, S.W. (2006). STED microscopy reveals that synapthotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935939.Google Scholar
Winckler, P., Lartigue, L., Giannone, G., De Giorgi, F., Ichas, F., Sibarita, J.B., Lounis, B. & Cognet, L. (2013). Identification and super-resolution imaging of ligand-activated receptor dimers in live cells. Sci Rep 3, 2387.Google Scholar
Woehl, T.J., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2013). Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 5363.Google Scholar
Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J.F. & Willner, I. (2003). “Plugging into Enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science 299, 18771881.Google Scholar
Yu, C., Hale, J., Ritchie, K., Prasad, N.K. & Irudayaraj, J. (2009). Receptor overexpression or inhibition alters cell surface dynamics of EGF-EGFR interaction: New insights from real-time single molecule analysis. Biochem Biophys Res Commun 378, 376382.Google Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 6164.Google Scholar
Zheng, H., Claridge, S.A., Minor, A.M., Alivisatos, A.P. & Dahmen, U. (2009 a). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9, 24602465.Google Scholar
Zheng, H., Smith, R.K., Jun, Y.W., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009 b). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.Google Scholar