Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T07:01:26.405Z Has data issue: false hasContentIssue false

Performance of High-Resolution SEM/EDX Systems Equipped with Transmission Mode (TSEM) for Imaging and Measurement of Size and Size Distribution of Spherical Nanoparticles

Published online by Cambridge University Press:  19 February 2014

Vasile-Dan Hodoroaba*
Affiliation:
BAM Federal Institute for Materials Research and Testing, D-12200 Berlin, Germany
Charles Motzkus
Affiliation:
Laboratoire National de Métrologie et d’Essais (LNE), 1 rue Gaston Boissier, 75724 Paris Cedex 15, France
Tatiana Macé
Affiliation:
Laboratoire National de Métrologie et d’Essais (LNE), 1 rue Gaston Boissier, 75724 Paris Cedex 15, France
Sophie Vaslin-Reimann
Affiliation:
Laboratoire National de Métrologie et d’Essais (LNE), 1 rue Gaston Boissier, 75724 Paris Cedex 15, France
*
*Corresponding author. Dan.Hodoroaba@bam.de
Get access

Abstract

The analytical performance of high-resolution scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) for accurate determination of the size, size distribution, qualitative elemental analysis of nanoparticles (NPs) was systematically investigated. It is demonstrated how powerful high-resolution SEM is by using both mono- and bi-modal distributions of SiO2 airborne NPs collected on appropriate substrates after their generation from colloidal suspension. The transmission mode of the SEM (TSEM) is systematically employed for NPs prepared on thin film substrates such as transmission electron microscopy grids. Measurements in the transmission mode were performed by using a “single-unit” TSEM transmission setup as manufactured and patented by Zeiss. This alternative to the “conventional” STEM detector consists of a special sample holder that is used in conjunction with the in-place Everhart–Thornley detector. In addition, the EDX capabilities for imaging NPs, highlighting the promising potential with respect to exploitation of the sensitivity of the new large area silicon drift detector energy dispersive X-ray spectrometers were also investigated. The work was carried out in the frame of a large prenormative VAMAS (Versailles Project on Advanced Materials and Standards) project, dedicated to finding appropriate methods and procedures for traceable characterization of NP size and size distribution.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyd, R.D., Cuenat, A., Meli, F., Klein, T., Frase, C.G., Gleber, G., Krumrey, M., Duta, A., Duta, S., Hogstrom, R. & Prieto, E. (2011). Good practice guide for the determination of the size and size distribution of spherical nanoparticle samples, Good Practice Guide No. 119, National Physical Laboratory, Teddington, GB.Google Scholar
Buhr, E., Senftleben, N., Klein, T., Bergmann, D., Gnieser, D., Frase, C.G. & Bosse, H. (2009). Characterization of nanoparticles by scanning electron microscopy in transmission mode. Meas Sci Technol 20, 084025 (9 pp.).Google Scholar
Carl Zeiss (2013). Available at http://microscopy.zeiss.com/microscopy/en_gb/products/scanning-electron-microscopes/upgrades/stem-detector, STEM Detector – Detecting transmitted electrons in a FESEM with the STEM detector. (accessed 24-01-2014).Google Scholar
Crawford, B.J. & Liley, C.R.W. (1970). A simple transmission stage using the standard collection system in the scanning electron microscope. J Phys E: Sci Instrum 3, 461462.Google Scholar
European Commission (EC) (2011). Commission Recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). OJ L 275, 3840.Google Scholar
Golla, U., Schindler, B. & Reimer, L. (1994). Contrast in the transmission mode of a low-voltage scanning electron microscope. J Microsc 173, 219225.Google Scholar
Golla-Schindler, U. & Schindler, B. (2004). Raster electron microscope. US Patent 6,815,678 B2.Google Scholar
Grillon, F. (2006). Low voltage contrast with an SEM transmission electron detector. Mikrochim Acta 155, 157161.Google Scholar
Hodoroaba, V.-D., Benemann, S., Motzkus, C., Macé, T., Palmas, P. & Vaslin-Reimann, S. (2012). Advanced analysis of spherical SiO2 aerosol nanoparticles with a high-resolution SEM. Microsc Microanal 18(Suppl 2), 17501751.Google Scholar
Hodoroaba, V.-D., Kim, K.J. & Unger, W.E.S. (2012). Energy dispersive electron probe microanalysis (ED-EPMA) of elemental composition and thickness of Fe-Ni alloy films. Surf Interface Anal 44, 14591461.Google Scholar
Hodoroaba, V.-D., Rades, S. & Unger, W.E.S. (2014). Inspection of morphology and elemental imaging of single nanoparticles by high-resolution SEM/EDX in transmission mode. Surface Interf Analysis, in press.Google Scholar
Hodoroaba, V.-D., Radtke, M., Vincze, L., Rackwitz, V. & Reuter, D. (2010). X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation—Modelling, experiment, and Monte-Carlo simulation. Nucl Instrum Meth Phys Res B 268, 35683575.Google Scholar
ISO 16700 (2004). Microbeam Analysis—Scanning Electron Microscopy—Guidelines for Calibrating Image Magnification. Geneva, Switzerland: ISO.Google Scholar
ISO 29301 (2010). Microbeam Analysis—Analytical Transmission Electron Microscopy—Methods for Calibrating Image Magnification by Using Reference Materials Having Periodic Structures. Geneva, Switzerland: ISO.Google Scholar
Jung, K.Y., Park, B.C., Song, W.Y., Oa, B.-H. & Eom, T.B. (2002). Measurement of 100-nm polystyrene sphere by transmission electron microscope. Powder Technol 126, 255265.Google Scholar
Kim, K.J., Unger, W.E.S., Kim, J.W., Moon, D.W., Gross, T., Hodoroaba, V.-D., Schmidt, D., Wirth, T., Jordaan, W., van Staden, M., Prins, S., Zhang, L., Fujimoto, T., Song, X.P. & Wang, H. (2012). Inter-laboratory comparison: Quantitative surface analysis of thin Fe-Ni alloy films. Surf Interface Anal 44, 192199.CrossRefGoogle Scholar
Klein, T., Buhr, E., Johnsen, K.-P. & Frase, C.G. (2011). Traceable measurement of nanoparticles size using a scanning electron microscope in transmission mode (TSEM). Meas Sci Technol 22 094002 (9 pp.).CrossRefGoogle Scholar
Linsinger, T.P.J., Roebben, G., Gilliland, D., Calzolai, L., Rossi, F., Gibson, N. & Klein, C. (2012). Requirements on measurements for the implementation of the European Commission definition of the term “nanomaterial”, JRC Reference Report, EUR 25404 EN, Joint Research Centre – Institute for Reference Materials and Measurements, Luxembourg: Publications Office of the European Union. doi: 10.2787/63490.Google Scholar
Meli, F., Klein, T., Buhr, E., Frase, C.G., Gleber, G., Krumrey, M., Duta, A., Duta, S., Korpelainen, V., Bellotti, R., Picotto, G.B., Boyd, R.D. & Cuenat, A. (2012). Traceable size determination of nanoparticles, a comparison among European metrology institutes. Meas Sci Technol 23, 125005 (15 pp.).Google Scholar
Motzkus, C., Macé, T., Gaie-Levrel, F., Ducourtieux, S., Delvallee, A., Dirscherl, K., Hodoroaba, V.-D., Popov, I., Popov, O., Kuselman, I., Takahata, K., Ehara, K., Ausset, P., Maillé, M., Michielsen, N., Bondiguel, S., Gensdarmes, F., Morawska, L., Johnson, G., Faghihi, E.M., Kim, C.S., Kim, Y.H., Chu, M.C., Guardado, J.A., Salas, A., Capannelli, G., Costa, C., Bostrom, T., Jämting, Å.K., Lawn, M.A., Adlem, L. & Vaslin-Reimann, S. (2013). Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: An interlaboratory comparison study. J Nanopart Res 15, 1919 (36 pp.).Google Scholar
Rasband, W.S. (1997–2012). Image J, Bethesda, Maryland, USA: US National Institute of Health. Available at http://rsb.info.nih.gov/ij/ (accessed 16-09-2013).Google Scholar
Reimer, L., Volbert, B. & Bracker, P. (1979). STEM semiconductor detector for testing SEM quality parameters. Scanning 2, 96103.Google Scholar
Vermeulen, J.P. & Jaksch, H. (2005). A novel STEM detector system. Imaging & Microsc 1, 2223.Google Scholar
Versailles Project on Advanced Materials and Standards (VAMAS) (2013). Technical Working Area TWA 34 Nanoparticle Populations, Project #3, Techniques for Characterizing Morphology of Airborne Nanoparticles. Available at http://www.vamas.org/twa34/index.html (accessed 16-09-2013).Google Scholar
Woolf, R.J., Joy, D.C. & Tansley, D.W. (1972). A transmission stage for the scanning electron microscope. J Phys E: Sci Instrum 5, 230233.Google Scholar