Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T20:12:03.623Z Has data issue: false hasContentIssue false

Simultaneous Hydrogen and Heavier Element Isotopic Ratio Images with a Scanning Submicron Ion Probe and Mass Resolved Polyatomic Ions

Published online by Cambridge University Press:  19 February 2014

Georges Slodzian*
Affiliation:
Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3 and Université Paris-Sud, F-91405 Orsay Cedex, France
Ting-Di Wu
Affiliation:
Institut Curie, Laboratoire de Microscopie Ionique, 91405 Orsay, France INSERM, U.759, 91405 Orsay, France
Noémie Bardin
Affiliation:
Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3 and Université Paris-Sud, F-91405 Orsay Cedex, France
Jean Duprat
Affiliation:
Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3 and Université Paris-Sud, F-91405 Orsay Cedex, France
Cécile Engrand
Affiliation:
Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3 and Université Paris-Sud, F-91405 Orsay Cedex, France
Jean-Luc Guerquin-Kern
Affiliation:
Institut Curie, Laboratoire de Microscopie Ionique, 91405 Orsay, France INSERM, U.759, 91405 Orsay, France
*
*Corresponding author. georges.slodzian@csnsm.in2p3.fr
Get access

Abstract

In situ microanalysis of solid samples is often performed using secondary ion mass spectrometry (SIMS) with a submicron ion probe. The destructive nature of the method makes it mandatory to prevent information loss by using instruments combining efficient collection of secondary ions and a mass spectrometer with parallel detection capabilities. The NanoSIMS meets those requirements with a magnetic spectrometer but its mass selectivity has to be improved for accessing opportunities expected from polyatomic secondary ions. We show here that it is possible to perform D/H ratio measurement images using 12CD/12CH, 16OD/16OH, or 12C2D/12C2H ratios. These polyatomic species allow simultaneous recording of D/H ratios and isotopic compositions of heavier elements like 15N/14N (via 12C15N/12C14N) and they provide a powerful tool to select the phase of interest (e.g., mineral versus organics). We present high mass resolution spectra and an example of isotopic imaging where D/H ratios were obtained via the 12C2D/12C2H ratio with 12C2D free from neighboring mass interferences. Using an advanced mass resolution protocol, a “conventional” mass resolving power of 25,000 can be achieved. Those results open many perspectives for isotopic imaging at a fine scale in biology, material science, geochemistry, and cosmochemistry.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research was performed at the Centre de Recherche de l’Institut Curie (Orsay), Laboratoire de Microscopie Ionique and at the Centre de Sciences Nucléaires et de Sciences de la Matière (Orsay).

References

Boxer, S.G., Kraft, M.L. & Weber, P.K. (2009). Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38, 5374.Google Scholar
Chipman, D.M. (1978). Effect of molecular geometry on electron affinity of water. J Phys Chem 82(9), 10801083.Google Scholar
Duprat, J., Dobrica, E., Engrand, C., Aléon, J., Marrocchi, Y., Mostefaoui, S., Meibom, A., Leroux, H., Rouzaud, J.N., Gounelle, M. & Robert, F. (2010). Extreme deuterium excesses in ultracarbonaceous micrometeorites from central Antarctic snow. Science 328, 742745.CrossRefGoogle ScholarPubMed
Mayali, X., Weber, P.K., Brodie, E.L., Mabery, S., D Hoerprich, P.D. & Pett-Ridge, J. (2012). High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. ISME J 6, 12101220.Google Scholar
Messaoudi, C., Boudier, T., Sorzano, C.O.S. & Marco, S. (2007). Tomography software for 3D reconstruction in transmission electron microscopy. BMC Bioinformatics 8, 288297.Google Scholar
Piani, L., Remusat, L. & Robert, F. (2012). Determination of the H isotopic composition of individual components in fine-scale mixtures of organic matter and phyllosilicates with the nanoscale secondary ion mass spectrometry. Annu Rev Biophys 38, 5374.Google Scholar
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012). NIH image to ImageJ: 25 years of image analysis. Nat Methods 9, 671675.Google Scholar
Slodzian, G., Daigne, B., Girard, F., Boust, F. & Hillion, F. (1992). Scanning secondary ion analytical microscopy with parallel detection. Biol Cell 74, 4350.Google Scholar
Slodzian, G., Engrand, C. & Duprat, J. (2012). Isotopic fractionation of silicon negative ions sputtered from minerals by Cs+ bombardment. Nucl Instrum Meth Phys Res B 275, 4157.Google Scholar