Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-27T19:35:46.604Z Has data issue: false hasContentIssue false

Characteristics of air entrainment during dynamic wetting failure along a planar substrate

Published online by Cambridge University Press:  14 April 2014

E. Vandre
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
M. S. Carvalho*
Affiliation:
Department of Mechanical Engineering, Pontificia Universidade Catòlica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
S. Kumar*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
*
Email addresses for correspondence: msc@puc-rio.br, kumar030@umn.edu
Email addresses for correspondence: msc@puc-rio.br, kumar030@umn.edu

Abstract

Characteristic substrate speeds and meniscus shapes associated with the onset of air entrainment are studied during dynamic wetting failure along a planar substrate. Using high-speed video, the behaviour of the dynamic contact line (DCL) is recorded as a tape substrate is drawn through a bath of a glycerol/water solution. Air entrainment is identified by triangular air films that elongate from the DCL above some critical substrate speed. Meniscus confinement within a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a wide range of liquid viscosities, expanding upon the findings of Vandre, Carvalho & Kumar (J. Fluid Mech., vol. 707, 2012, pp. 496–520). A pressurized liquid reservoir controls the meniscus position within the confinement gap. It is found that liquid pressurization further postpones air entrainment when the meniscus is located near a sharp corner along the stationary plate. Meniscus shapes recorded near the DCL demonstrate that operating conditions influence the size of entrained air films, with smaller films appearing in the more viscous solutions. Regardless of size, air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Recorded critical speeds and air-film sizes compare well to predictions from a hydrodynamic model for dynamic wetting failure, suggesting that strong air stresses near the DCL trigger the onset of air entrainment.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benkreira, H. & Ikin, J. B. 2010 Dynamic wetting and gas viscosity effects. Chem. Engng Sci. 65, 17901796.CrossRefGoogle Scholar
Benkreira, H. & Khan, M. I. 2008 Air entrainment in dip coating under reduced air pressures. Chem. Engng Sci. 63, 448459.Google Scholar
Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid Interface Sci. 299, 113.Google Scholar
Blake, T. D., Clarke, A. & Stattersfield, E. H. 2000 An investigation of electrostatic assist in dynamic wetting. Langmuir 16, 29282935.Google Scholar
Blake, T. D., Dobson, R. A. & Ruschak, K. J. 2004 Wetting at high capillary numbers. J. Colloid Interface Sci. 279, 198205.Google Scholar
Blake, T. D. & Ruschak, K. J. 1979 A maximum speed of wetting. Nature 282, 489491.Google Scholar
Blake, T. D. & Ruschak, K. J. 1997 Wetting: static and dynamic contact lines. In Liquid Flim Coating (ed. Kistler, S. F. & Schweizer, P. M.), pp. 6397. Chapman & Hall.CrossRefGoogle Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.Google Scholar
Burley, R. & Jolly, R. P. S. 1984 Entrainment of air into liquids by a high speed continuous solid surface. Chem. Engng Sci. 39, 13571372.Google Scholar
Burley, R. & Kennedy, B. S. 1976 An experimental study of air entrainment at a solid/liquid/gas interface. Chem. Engng Sci. 31, 901911.Google Scholar
Cohu, O. & Benkreira, H. 1998 Air entrainment in angled dip coating. Chem. Engng Sci. 53, 533540.Google Scholar
De Coninck, J. & Blake, T. D. 2008 Wetting and molecular dynamics simulations of simple liquids. Annu. Rev. Mater. Res. 38, 122.CrossRefGoogle Scholar
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.Google Scholar
Delon, G., Fermigier, M., Snoeijer, J. H. & Androtti, B. 2008 Relaxation of a dewetting contact line. Part 2. Experiments. J. Fluid Mech. 604, 5575.Google Scholar
Dussan V., E. B. 1976 The moving contact line: the slip boundary condition. J. Fluid Mech. 77, 665684.Google Scholar
Gutoff, E. B. & Kendrick, C. E. 1982 Dynamic contact angles. AIChE J. 28, 459466.CrossRefGoogle Scholar
Jacqmin, D. 2002 Very, very fast wetting. J. Fluid Mech. 455, 347358.Google Scholar
Kistler, S. F. 1993 Hydrodynamics of wetting. In Wettability (ed. Berg, J. C.), pp. 311429. Marcel Dekker.Google Scholar
Lauga, E., Brenner, M. P. & Stone, H. A. 2005 Microfluidics: the no-slip boundary condition. In Handbook of Experimental Fluid Dynamics (ed. Tropea, C., Foss, J. F. & Yarin, A.), Springer.Google Scholar
Maleki, M., Reyssat, E., Quéré, D. & Golestanian, R. 2007 On the Landau–Levich transition. Langmuir 23, 1011610122.Google Scholar
Marchand, A., Chan, T. S., Snoeijer, J. H. & Andreotti, B. 2012 Air entrainment by contact lines of a solid plate plunged into a viscous fluid. Phys. Rev. Lett. 108, 204501.Google Scholar
Neto, C., Evan, D. R., Bonaccurso, E., Butt, H.-J. & Craig, V. S. J. 2005 Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 28592897.CrossRefGoogle Scholar
Ravinutala, S. & Polymeropoulos, C. 2002 Entrance meniscus in a pressurized optical fiber coating applicator. Exp. Therm. Fluid Sci. 26, 573580.Google Scholar
Severtson, Y. C. & Aidun, C. K. 1996 Stability of two-layer stratified flow in inclined channels: applications to air entrainment in coating systems. J. Fluid Mech. 312, 173200.Google Scholar
Sheely, M. L. 1932 Glycerol viscosity tables. Ind. Engng Chem. 24, 10601064.Google Scholar
Shikhmurzaev, Y. D. 2008 Capillary Flows with Forming Interfaces. Chapman & Hall/CRC.Google Scholar
Simpkins, P. G. & Kuck, V. J. 2003 On air entrainment in coatings. J. Colloid Interface Sci. 263, 562571.Google Scholar
Snoeijer, J. H. 2006 Free-surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18, 021701.Google Scholar
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.Google Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2012 Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707, 496520.Google Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2013 On the mechanism of wetting faluire during fluid displacement along a moving substrate. Phys. Fluids 25, 102103.Google Scholar
van Lengerich, H. B. & Steen, P. H. 2012 Energy dissipation and the contact-line region of a spreading bridge. J. Fluid Mech. 703, 111141.Google Scholar
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.Google Scholar
Yamamura, M. 2007 Assisted dynamic wetting in liquid coatings. Colloids Surf. A 311, 5560.Google Scholar
Yue, P. & Feng, J. J. 2011 Can diffuse-interface models quantitatively describe moving contact lines?. Eur. Phys. J. Spec. Top. 197, 3746.CrossRefGoogle Scholar
Supplementary material: PDF

Vandre supplementary material

Supplementary material

Download Vandre supplementary material(PDF)
PDF 1.1 MB