Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T18:54:22.767Z Has data issue: false hasContentIssue false

Advances in source technology for focused ion beam instruments

Published online by Cambridge University Press:  09 April 2014

Noel S. Smith
Affiliation:
Oregon Physics LLC, n.smith@oregon-physics.com
John A. Notte
Affiliation:
Ion Microscopy Innovation Center at Carl Zeiss Microscopy, LLC; john.notte@Zeiss.com
Adam V. Steele
Affiliation:
zeroK Nanotech Corporation; adam@zerok.com
Get access

Abstract

Owing to the development of new ion source technology, users of focused ion beams (FIBs) have access to superior performance when compared with the industry standard Ga+ liquid metal ion source. FIBs equipped with an inductively coupled plasma (ICP) ion source are better able to carry out large volume milling applications by providing up to 2 µA of Xe+ ions focused into a sub-5 µm spot. However, ICP FIBs are presently limited to 25 nm imaging resolution at 1 pA.The gas field ionization source (GFIS) relies upon an ion source that is the size of a single atom and correspondingly gains high brightness through its very small source size. The high brightness allows the GFIS to produce a very small focused probe size (<0.35 nm for helium), but with comparatively small beam currents (less than 2 pA). The Cs+ low temperature ion source, still being developed, has a projected sub-nm focal spot size at 1 pA, a maximum current of several nanoamps, and has the potential to offer integrated secondary ion mass spectrometry capabilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Forbes, R., Mair, G.L.R., in Handbook of Charged Particle Optics, 2nd ed., Orloff, J., Ed. (CRC Press, New York, 2009).Google Scholar
Smith, N., Tesch, P., Martin, N., Kinion, D., Appl. Surf. Sci. 255 (4), 1606 (2008).CrossRefGoogle Scholar
Smith, N., Tesch, P., Martin, N., Boswell, R., Micros. Today 17 (5), 18 (2009).CrossRefGoogle Scholar
Merkulov, A., Peres, P., Choi, J., Horreard, F., Ehrke, H.-U., Loibl, N., Schumacher, M., J. Vac. Sci. Technol. B 28, C1 (2010).CrossRefGoogle Scholar
Hoppe, P., Cohen, S., Meibom, A., Geostand. Geoanal. Res. 37 (2), 111 (2013).CrossRefGoogle Scholar
Druce, J., Kyushu University, personal communication.Google Scholar
Altmann, F., Klengel, S., Schischka, J., Petzold, M., Proc. of 63rd Electronic Components and Technology Conference, ECTC, 1940 (Washington, DC, 2013).Google Scholar
Tesch, P., Smith, N., Martin, N., Kinion, D., Proc. from the 34th International Symposium for Testing and Failure Analysis (ISTFA), 7 (2008).Google Scholar
Hill, R., Notte, J., Ward, B., Phys. Procedia 1, 135 (2008).CrossRefGoogle Scholar
Knuffman, B., Steele, A.V., McClelland, J.J., J. Appl. Phys. 114, 044303 (2013).CrossRefGoogle Scholar
Muller, E.W., Tsong, T.T., Field Ion Microscopy Principles and Applications (American Elsevier, New York, 1969).CrossRefGoogle Scholar
Economou, N.P., Notte, J.A., Thompson, W.B., Scanning 34 (2), 83 (2012).CrossRefGoogle Scholar
Melmed, A.J., Appl. Surf. Sci. 94/95, 17 (1996).CrossRefGoogle Scholar
Hill, R., Notte, J.A., Scipioni, L., in Advances in Imaging and Electron Physics, Hawkes, P.W., Ed. (Elsevier, New York, 2012), vol. 170, p. 65.Google Scholar
Notte, J., Micros. Today 20 (5), 16 (2012).CrossRefGoogle Scholar
Metcalf, H.J., van der Straten, P., Laser Cooling and Trapping (Springer, New York, 1999).CrossRefGoogle Scholar
Knuffman, B., Steele, A.V., Orloff, J., McClelland, J.J., New J. Phys. 13, 103035 (2011).CrossRefGoogle Scholar
Debernardi, N., Reijnders, M.P., Engelen, W.J., Clevis, T.T.J., Mutsaers, P.H.A., Luiten, O.J., Vredenbregt, E.J.D., J. Appl. Phys. 110, 024501 (2011).CrossRefGoogle Scholar
Steele, A.V., Knuffman, B., McClelland, J.J., J. Appl. Phys. 109, 104308 (2011).CrossRefGoogle Scholar
Hawkes, P.W., Kasper, E., Principles of Electron Optics, Vol. 2 (Academic Press, San Diego, CA, 1996).Google Scholar
Reif, F., Fundamentals of Statistical and Thermal Physics (Waveland Press, Long Grove, IL, 2009).Google Scholar
van der Geer, S.B., Reijnders, M.P., deLoos, M.J., Vredenbregt, E.J.D., Mutsaers, P.H.A., Luiten, O.J., J. Appl. Phys. 102, 094312 (2007).CrossRefGoogle Scholar
Steele, A.V., Knuffman, B., McClelland, J.J., Orloff, J., J. Vac. Sci. Technol. B 28, C6F1 (2010).CrossRefGoogle Scholar