Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T03:25:17.931Z Has data issue: false hasContentIssue false

Piezoresistance in silicon and its nanostructures

Published online by Cambridge University Press:  31 March 2014

A.C.H. Rowe*
Affiliation:
Physique de la matière condensée, Ecole Polytechnique, CNRS, France
*
a)Address all correspondence to this author. e-mail: alistair.rowe@polytechnique.edu
Get access

Abstract

Piezoresistance (PZR) is the change in the electrical resistivity of a solid induced by an applied mechanical stress. Its origin in bulk crystalline materials like silicon is principally a change in the electronic structure which leads to a modification of the effective mass of charge carriers. The past few years have seen a rising interest in the PZR properties of semiconductor nanostructures, motivated in part by claims of a giant PZR (GPZR) in silicon nanowires more than two orders of magnitude bigger than the known bulk effect. This review aims to present the controversy surrounding claims and counterclaims of GPZR in silicon nanostructures by summarizing the major works carried out over the past 10 years. The main conclusions to be drawn from the literature are that (i) reproducible evidence for a GPZR in ungated nanowires is limited; (ii) in gated nanowires, GPZR has been reproduced by several authors; (iii) the giant effect is fundamentally different from either the bulk silicon PZR or that resulting from quantum confinement, the evidence pointing to an electrostatic origin; (iv) released nanowires tend to have slightly larger PZR than unreleased nanowires; and (v) insufficient work has been performed on bottom-up grown nanowires to be able to rule out a fundamental difference in their properties when compared with top-down nanowires. On the basis of this, future possible research directions are suggested.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Bridgman, P.W.: The electrical resistance of metals under pressure. Proc. Am. Acad. Arts Sci. 52, 573 (1917).CrossRefGoogle Scholar
Bridgman, P.W.: The resistance of 72 elements, alloys and compounds to 100,000 Kg/Cm². Proc. Am. Acad. Arts Sci. 81, 165 (1952).CrossRefGoogle Scholar
Fu, L., Kane, C.L., and Mele, E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).CrossRefGoogle ScholarPubMed
Wolfe, J.C.: Summary of the Kronig-Penney electron. Am. J. Phys. 46, 1012 (1978).CrossRefGoogle Scholar
Smith, C.S.: Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42 (1954).CrossRefGoogle Scholar
Tufte, O.N. and Stelzer, E.L.: Piezoresistive properties of heavily doped n-type silicon. J. Appl. Phys. 34, 313 (1963).CrossRefGoogle Scholar
Herring, C. and Vogt, E.: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944 (1956).CrossRefGoogle Scholar
Aubrey, J., Gubler, W., Henningsen, T., and Koenig, S.: Piezoresistance and piezo-Hall-effect in n-type silicon. Phys. Rev. 130, 1667 (1963).CrossRefGoogle Scholar
Milne, J.S., Favorskiy, I., Rowe, A.C.H., Arscott, S., and Renner, C.: Piezoresistance in silicon at uniaxial compressive stresses up to 3 GPa. Phys. Rev. Lett. 108, 256801 (2012).CrossRefGoogle ScholarPubMed
Kanda, Y.: A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 29, 64 (1982).CrossRefGoogle Scholar
Adams, E.: Elastoresistance in p-type Ge and Si. Phys. Rev. 96, 803 (1954).CrossRefGoogle Scholar
Ohmura, Y.: Piezoresistance effect in p-type Si. Phys. Rev. B 42, 9178 (1990).CrossRefGoogle ScholarPubMed
Suzuki, K., Hasegawa, H., and Kanda, Y.: Origin of the linear and nonlinear piezoresistance effects in p-type silicon. Jpn. J. Appl. Phys. 23, L871 (1984).CrossRefGoogle Scholar
Kleimann, P., Semmache, B., Le Berre, M., and Barbier, D.: Stress-dependent hole effective masses and piezoresistive properties of p-type monocrystalline and polycrystalline silicon. Phys. Rev. B 57, 8966 (1998).CrossRefGoogle Scholar
Richter, J., Pedersen, J., Brandbyge, M., Thomsen, E., and Hansen, O.: Piezoresistance in p-type silicon revisited. J. Appl. Phys. 104, 023715 (2008).CrossRefGoogle Scholar
Thompson, S., Sun, G., Choi, Y., and Nishida, T.: Uniaxial-process-induced strained-Si: Extending the CMOS roadmap. IEEE Trans. Electron Devices 53, 1010 (2006).CrossRefGoogle Scholar
Fan, X., Register, L., Winstead, B., Foisy, M., Chen, W., Zheng, X., Ghosh, B., and Banerjee, S.: Hole mobility and thermal velocity enhancement for uniaxial stress in Si up to 4 GPa. IEEE Trans. Electron Devices 54, 291 (2007).CrossRefGoogle Scholar
He, R. and Yang, P.: Giant piezoresistance effect in silicon nanowires. Nature Nanotech. 1, 42 (2006).CrossRefGoogle ScholarPubMed
Matsuda, K., Kanda, Y., Yamamura, K., and Suzuki, K.: Second-order piezoresistance coefficients of p-type silicon. Jap. J. Appl. Phys. 29, L1941 (1990).CrossRefGoogle Scholar
Matsuda, K., Suzuki, K., Yamamura, K., and Kanda, Y.: Nonlinear piezoresistance effects in silicon. J. Appl. Phys. 73, 1838 (1993).CrossRefGoogle Scholar
Shifren, L., Wang, X., Matagne, P., Obradovic, B., Auth, C., Cea, S., Ghani, T., He, J., Hoffman, T., Kotlyar, R., Ma, Z., Mistry, K., Nagisetty, R., Shaheed, R., Stettler, M., Weber, C., Giles, M.D.: Drive current enhancement in p-type metal–oxide–semiconductor field-effect transistors under shear uniaxial stress. Appl. Phys. Lett. 85, 6188 (2004).CrossRefGoogle Scholar
Tsang, Y., O’Neill, A., Gallacher, B., and Olsen, S.: Using piezoresistance model with cr conversion for modeling of strain-induced mobility. IEEE Trans. Electron Devices 29, 1062 (2008).CrossRefGoogle Scholar
Kozlovskiy, S.I. and Sharan, N.N.: Piezoresistive effect in p-type silicon classical nanowires at high uniaxial strains. J. Comput. Electron. 10, 258 (2011).CrossRefGoogle Scholar
Dorda, G.: Effective mass change of electrons in silicon inversion layers observed by piezoresistance. Appl. Phys. Lett. 17, 406 (1970).CrossRefGoogle Scholar
Dorda, G.: Piezoresistance in quantized conduction bands in silicon inversion layers. J. Appl. Phys. 42, 2053 (1971).CrossRefGoogle Scholar
Eisele, I.: Stress and intersubband correlation in the silicon inversion layer. Surf. Sci. 73, 315 (1978).CrossRefGoogle Scholar
Dorda, G., Eisele, I., and Gesch, H.: Many-valley interactions in n-type silicon inversion layers. Phys. Rev. B 17, 1785 (1978).CrossRefGoogle Scholar
Shkolnikov, Y.P., Vakili, K., De Poortere, E.P., and Shayegan, M.: Giant low-temperature piezoresistance effect in AlAs two-dimensional electrons. Appl. Phys. Lett. 85, 3766 (2004).CrossRefGoogle Scholar
Habib, B., Shabani, J., De Poortere, E.P., Shayegan, M., and Winkler, R.: Anisotropic low-temperature piezoresistance in (311)A GaAs two-dimensional holes. Appl. Phys. Lett. 91, 012107 (2007).CrossRefGoogle Scholar
Yasutada, T., Toriyama, T., and Sugiyama, S.: Characteristics of polycrystalline Si nano wire piezoresistors. In Proceedings of the Technical Digest of the Sensor Symposium, Interlaken, Switzerland. Vol. 17, 1999; 195.Google Scholar
Toriyama, T., Tanimoto, Y., and Sugiyama, S.: Single crystal silicon nano-wire piezoresistors for mechanical sensors. J. Microelectromech. Syst. 11, 605 (2002).CrossRefGoogle Scholar
Toriyama, T., Funai, D., and Sugiyama, S.: Piezoresistance measurement on single crystal silicon nanowires. J. Appl. Phys. 93, 561 (2003).CrossRefGoogle Scholar
Beaty, R.E., Jaeger, R.C., Suhling, J.C., Johnson, R.W., and Butler, R.D.: Evaluation of piezoresistive coefficient variation in silicon stress sensors using a four-point bending test fixture. IEEE Trans. Comp. Hyb. Man. Tech. 15, 904 (1992).CrossRefGoogle Scholar
Cao, J.X., Gong, X.G., and Wu, R.Q.: Giant piezoresistance and its origin in Si (111) nanowires: First-principles calculations. Phys. Rev. B 75, 233302 (2007).CrossRefGoogle Scholar
Shiri, D., Kong, Y., Buin, A., and Anantram, M.P.: Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 93, 073114 (2008).CrossRefGoogle Scholar
Nakamura, K., Dao, D.V., Tung, B.T., Toriyama, T., and Sugiyama, S.: Piezoresistive effect in silicon nanowires—a comprehensive analysis based on first-principles calculations. International symposium on Micro-NanoMechanics and Human Science, 2009. 2009; 38.CrossRefGoogle Scholar
Leu, P.W., Svizhenko, A., and Cho, K.: Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 77, 235305 (2008).CrossRefGoogle Scholar
Niquet, Y-M., Delerue, C., and Krzeminski, C.: Effects of strain on the carrier mobility in silicon nanowires. Nano Lett. 12, 3545 (2012).CrossRefGoogle ScholarPubMed
Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
Zhao, X., Wei, C.M., Yang, L., and Chou, M.Y.: Quantum confinement and electronic properties of silicon nanowires. Phys. Rev. Lett. 92, 236805 (2004).CrossRefGoogle ScholarPubMed
Rowe, A.C.H.: Silicon nanowires feel the pinch. Nat. Nanotech. 3, 312 (2008).CrossRefGoogle ScholarPubMed
Nghiem, T.T., Aubry-Fortuna, V., Chassat, C., Bosseboeuf, A., and Dollfus, P.: Monte Carlo simulation of giant piezoresistance effect in p-type silicon nanostructures. Mod. Phys. Lett. B 25, 995 (2011).CrossRefGoogle Scholar
Hamada, A. and Takeda, E.: Hot-electron trapping activation energy in PMOSFET's under mechanical stress. IEEE Trans. Electron Devices 15, 31 (1994).CrossRefGoogle Scholar
Xiao, Z., She, J., Deng, S., and Xu, N.: Large piezoresistance of single silicon nano-needles induced by non-uniaxial strain. J. Appl. Phys. 110, 114323 (2011).CrossRefGoogle Scholar
Kumar Bhaskar, U., Pardoen, T., Passi, V., and Raskin, J-P.: Surface states and conductivity of silicon nano-wires. J. Appl. Phys. 113, 134502 (2013).CrossRefGoogle Scholar
Reck, K., Richter, J., Hansen, O., and Thomsen, E.V.: Piezoresistive effect in top-down fabricated silicon nanowires. International Conference on Micro Electro Mechanical Systems, Tuscon, AZ, 2008. Vol. 217. 2008.Google Scholar
Bui, T.T., Dao, D.V., Nakamura, K., Toriyama, T., and Sugiyama, S.: Evaluation of the piezoresistive effect in single crystalline silicon nanowires. IEEE Sens. 1-3, 41 (2009).Google Scholar
Reck, K., Richter, J., Hansen, O., and Thomsen, E.V.: Increased piezoresistive effect in crystalline and polycrystalline Si nanowires. NTSI Nanotech. 1, 920 (2008).Google Scholar
Milne, J.S., Rowe, A.C.H., Arscott, S., and Renner, C.: Giant piezoresistance effects in silicon nanowires and microwires. Phys. Rev. Lett. 105, 226802 (2010).CrossRefGoogle ScholarPubMed
Koumela, A., Mercier, D., Dupré, C., Jourdan, G., Marcoux, C., Ollier, E., Purcell, S.T., and Duraffourg, L.: Piezoresistance of top-down suspended Si nanowires. Nanotechnology 22, 395701 (2011).CrossRefGoogle ScholarPubMed
Barwicz, T., Klein, L., Koester, S.J., and Hamann, H.: Silicon nanowire piezoresistance: Impact of surface crystallographic orientation. Appl. Phys. Lett. 97, 023110 (2010).CrossRefGoogle Scholar
Rochette, F., Cassé, M., Mouis, M., Haziot, A., Pioger, T., Ghibaudo, G., and Boulanger, F.: Piezoresistance effect of strained and unstrained fully-depleted silicon-on-insulator MOSFETs integrating a HfO2/TiN gate stack. Solid State Electron. 53, 392 (2009).CrossRefGoogle Scholar
Passi, V., Ravaux, F., Dubois, E., and Raskin, J.P.: Backgate bias and stress level impact on giant piezoresistance effect in thin silicon films and nanowires. International Conference on Micro Electro Mechanical Systems, Wanchai, Hong Kong, 2010; 464.Google Scholar
Kang, T.K.: The piezoresistive effect in n-type junctionless silicon nanowire transistors. Nanotechnology 23, 475203 (2012).CrossRefGoogle ScholarPubMed
Kang, T.K.: Evidence for giant piezoresistance effect in n-type silicon nanowire field-effect transistors. Appl. Phys. Lett. 100, 163501 (2012).CrossRefGoogle Scholar
Singh, P., Park, W.T., Miao, J., Shao, L., Krishna Kotlanka, R., and Kwong, D.L.: Tunable piezoresistance and noise in gate-all-around nanowire field-effect-transistor. Appl. Phys. Lett. 100, 063106 (2012).CrossRefGoogle Scholar
Neuzil, P., Wong, C.C., and Reboud, J.: Electrically controlled giant piezoresistance in silicon nanowires. Nano Lett. 10, 1248 (2010).CrossRefGoogle ScholarPubMed
Yang, Y. and Li, X.: Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology 22, 015501 (2011).CrossRefGoogle ScholarPubMed
Lugstein, A., Steinmair, M., Steiger, A., Kosina, H., and Bertagnolli, E.: Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett. 10, 3204 (2010).CrossRefGoogle ScholarPubMed
Zhang, Y., Liu, X.Y., Ru, C.H., Zhang, Y.L., Dong, L.X., and Sun, Y.: Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device. J. Microelectromech. Syst. 20, 959 (2011).CrossRefGoogle Scholar
Wortman, J.J. and Evans, R.A.: Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).CrossRefGoogle Scholar
Kumar Bhaskar, U., Pardoen, T., Passi, V., and Raskin, J-P.: Piezoresistance of nano-scale silicon up to 2 GPa in tension. Appl. Phys. Lett. 102, 031911 (2013).CrossRefGoogle Scholar
Vu, D., Arscott, S., Peytavit, E., Ramdani, R., Gil, E., André, Y., Bansropun, S., Gérard, B., Rowe, A.C.H., and Paget, D.: Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces. Phys. Rev. B 82, 115331 (2010).CrossRefGoogle Scholar
Himpsel, F.J., Hollinger, G., and Pollak, R.A.: Determination of the Fermi-level pinning position at Si (111) surfaces. Phys. Rev. B 28, 7014 (1983).CrossRefGoogle Scholar
Terman, L.M.: An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5, 285 (1962).CrossRefGoogle Scholar
Chadi, D.J., Citrin, P.H., Park, C.H., Adler, D.L., Marcus, M.A., and Gossman, H-J.: Fermi-level-pinning defects in highly n-doped silicon. Phys. Rev. Lett. 79, 4843 (1997).CrossRefGoogle Scholar
Wagner, L.F. and Spicer, W.E.: Photoemission study of the effect of bulk doping and oxygen exposure on silicon surface states. Phys. Rev. B 9, 1512 (1974).CrossRefGoogle Scholar
Anderås, E., Vestling, L., Olsson, J., and Katardjiev, I.: Resistance electric field dependence and time drift of piezoresistive single crystalline silicon nanofilms. Proc. Chem. 1, 80 (2009).CrossRefGoogle Scholar
Pilkey, W.D.: Peterson’s stress concentration factors (Wiley-Interscience, New York, 1997).CrossRefGoogle Scholar
Bashir, R., Gupta, A., Neudeck, G.W., McElfresh, M., and Gomez, R.: On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. J. Micromech. Microeng. 10, 483 (2000).CrossRefGoogle Scholar
Hannon, J.B., Kodambaka, S., Ross, F.M., and Tromp, R.M.: The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69 (2006).CrossRefGoogle Scholar
Lang, D.V., Grimmeiss, H.G., Meijer, E., and Jaros, M.: Complex nature of gold-related deep levels in silicon. Phys. Rev. B 22, 3917 (1980).CrossRefGoogle Scholar
Auth, C., Allen, C., Blattner, A., and Bergstrom, D.: A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. Symposium on VLSI Technology, Honolulu, HI, 2012; 131.Google Scholar
Greeneich, E.W. and Muller, R.S.: Acoustic‐wave detection via a piezoelectric field‐effect transducer. Appl. Phys. Lett. 20, 156 (1972).CrossRefGoogle Scholar
He, R., Feng, X., Roukes, M.L., and Yang, P.: Self-transducing silicon nanowire electromechanical systems at room temperature. Nano Lett. 8, 1756 (2008).CrossRefGoogle ScholarPubMed
Mile, E., Jourdan, G., Bargatin, I., Labarthe, S., Marcoux, C., Andreucci, P., Hentz, S., Kharrat, C., Colinet, E., and Duraffourg, L.: In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection. Nanotechnology 21, 165504 (2010).CrossRefGoogle ScholarPubMed
Singh, P., Miao, J., Pott, V., Park, W.T., and Kwong, D.L.: Piezoresistive sensing performance of junctionless nanowire FET. IEEE Electron Devices Lett. 33, 1759 (2012).CrossRefGoogle Scholar
Zhang, S., Lou, L., and Lee, C.: Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl. Phys. Lett. 100, 023111 (2012).CrossRefGoogle Scholar
Sansa, M., Fernandez-Regulez, M., San Paulo, A., and Perez-Murano, F.: Electrical transduction in nanomechanical resonators based on doubly clamped bottom-up silicon nanowires. Appl. Phys. Lett. 101, 243115 (2012).CrossRefGoogle Scholar
Allain, P.E., Parrain, F., Bosseboeuf, A., Mâaroufi, S., Coste, P., and Walther, A.: Large-range MEMS motion detection with Subangström noise level using an integrated piezoresistive silicon nanowire. J. Microelectromech. Syst. 22, 716 (2013).CrossRefGoogle Scholar
Iida, T., Itoh, T., Noguchi, D., and Takano, Y.: Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms. J. Appl. Phys. 87, 675 (2000).CrossRefGoogle Scholar
Allain, P.E., Le Roux, X., Parrain, F., and Bosseboeuf, A.: Large initial compressive stress in top-down fabricated silicon nanowires evidenced by static buckling. J. Micromech. Microeng. 23, 015014 (2013).CrossRefGoogle Scholar
Chung, S.W., Yu, J.Y., and Heath, J.R.: Silicon nanowire devices. Appl. Phys. Lett. 76, 2068 (2000).CrossRefGoogle Scholar
Creemer, J.F., Fruett, F., Meijer, G., and French, P.J.: The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sens. J 1, 98 (2001).CrossRefGoogle Scholar